
Syntactic and Semantic Issues in Introductory
Programming Education

Linda Kathryn McIver
B Comp (Hons)

Supervisor: Dr Damian Conway

School of Computer Science and Software Engineering

Monash University

Australia

Submitted for the degree of Doctor of Philosophy

January, 2001

Syntactic, Semantic, and Social Issues in Introductory Programming Education

Syntactic, Semantic and Social Issues in Introductory

Programming Education

Abstract

Learning computer programming is difficult. Students often have trouble coming

to terms with the fundamentals of programming. At the same time, they are

forced to tackle the complexities of a particular programming language. There is

considerable debate about the choice of programming language for introductory

programming courses, but little empirical evidence for the efficacy of any

particular language.

This thesis examines why learning to program is difficult. Programming

languages are discussed as user interfaces, and hence analysed using usability

principles. This analysis is used as the basis for the construction of a theory of

pedagogical programming language design, which is then applied to the design of

a new pedagogical programming language, GRAIL.

A new framework is presented for the evaluation of pedagogical programming

languages. Using this framework, GRAIL is evaluated, and subsequently

redesigned. The results of the evaluation provide evidence of the impact of

introductory programming languages on the learning process, and show that the

choice of introductory programming language is important.

In loving memory of Dianne Louise Wapling

10/11/1971 – 22/9/1996

Acknowledgements

I would like to thank many people for helping me survive the last few years. In
particular:

• The admin and technical staff in CSSE have provided invaluable support
throughout my candidature. In particular, I am indebted to Karen
Fenwick, Jamie Scuglia, Glen Pringle, and Steve Welsh.

• Andrew McIver, Steve Welsh, David Chatterton, Kevin Lentin, Tony
Jansen, and Darren Platt all provided excellent proof-reading services.

• Many thanks are due to Ricky McConachy and Kevin Lentin for technical
help with the Jump Start Programme, and to Kate Chatterton, Kate Nairn,
and Jane Sykes for beta testing the course.

• The Department of Computer Science, and its successor, the School of
Computer Science and Software Engineering, especially Trevor Dix, have
been exceptionally generous, both with scholarship funding (extended
throughout prolonged illness) and funding for Jump Start.

• Darren Platt and Andrew Davison got me into this mess in the first place
– thanks guys.

• My supervisor, Damian Conway, got me deeper into this mess, and
turned me into an academic. He also provided support above and
beyond the call of duty, especially when I was ill. "Thankyou" just doesn't
seem adequate!

• The muffin-klatch and my second family in the Power Electronics Group
(PEG) helped keep me sane – quite a feat! Thanks guys.

• Thanks to Kerryn Davison, for regular phone calls and support.

• Special thanks are due to Tony Jansen for endless cups of tea, strong
support, and lots of hugs.

• Extra-special thanks are due to Darren Platt, for proving that it can be
done, and for always being there for me, despite being on the other side
of the world!

Finally, and most importantly: without my husband, Andrew McIver, I
would never have survived, much less produced a thesis. Maybe one day
I'll be able to make it up to you!

Table of Contents

1 Syntactic, Semantic and Social Issues in Introductory
Programming Education...1-1

1.1 Introduction..1-1
1.2 Thesis Outline..1-1

2 User Interfaces and Usability ...2-1
2.1 User Interfaces ...2-1

2.1.1 Levels of interface...2-3
2.2 Usability..2-4

2.2.1 Definition of usability ..2-4
2.2.2 Market forces ...2-6
2.2.3 Essential Attributes of User Interfaces ...2-7

2.3 Technological barriers to usability ... 2-13
2.3.1 Lack of reliability ... 2-13
2.3.2 Lack of standardization .. 2-16
2.3.3 Inherent complexity ... 2-17
2.3.4 Imposed complexity (featuritis) .. 2-18

2.4 Psychological barriers to usability .. 2-19
2.4.1 Bad experiences with technology in general.. 2-19
2.4.2 Bad experiences with computers in particular .. 2-19
2.4.3 Intimidating jargon ... 2-21
2.4.4 Learned helplessness .. 2-22
2.4.5 Cognitive dissonance ... 2-23
2.4.6 False consonance.. 2-23
2.4.7 Fear of breaking something .. 2-24

2.5 Cognitive Ergonomics... 2-25
2.5.1 Cognitive Dimensions of Notations ... 2-25
2.5.2 Knowledge-in-the-world .. 2-25

2.6 Summary... 2-26

3 The programming language as interface...........................3-1
3.1 What is a programming language?..3-1

3.1.1 Definition ..3-1
3.2 The connection between language and interface3-2

3.2.1 Language ...3-2
3.2.2 Development environment...3-3
3.2.3 Compiler/Interpreter ..3-3

3.3 The programming language as interface ..3-4
3.3.1 What programming languages should be ...3-4
3.3.2 What programming languages usually are...3-8
3.3.3 Cognitive dimensions of programming languages3-9

3.4 Summary... 3-12

4 The trouble with learning to program...............................4-1
4.1 Is there trouble? ...4-2

4.1.1 Evidence ..4-2
4.1.2 Choice of language ...4-5
4.1.3 Choice of tools ..4-6

4.2 Cognition ..4-9
4.2.1 Requirements for learning..4-9

4.2.2 Errors .. 4-10
4.2.3 Problem solving ... 4-13

4.3 Programming-Specific problems... 4-14
4.3.1 Cognitive demands of programming .. 4-14
4.3.2 Expert programmers .. 4-17

4.4 Existing solutions .. 4-19
4.4.1 Subsetting ... 4-19
4.4.2 Language overlays ... 4-20
4.4.3 Supporting environments .. 4-20
4.4.4 New languages .. 4-21
4.4.5 Acceptance... 4-22

4.5 Missing links.. 4-22

5 Usability of Programming Languages...............................5-1
5.1 Analysis of programming languages ..5-2

5.1.1 Criteria ..5-2
5.2 The languages ..5-5

5.2.1 Pascal ..5-5
5.2.2 ABC...5-7
5.2.3 Turing ...5-8
5.2.4 Modula-3...5-9
5.2.5 Prolog .. 5-11
5.2.6 C.. 5-12
5.2.7 C++ ... 5-14
5.2.8 Ada.. 5-16
5.2.9 Smalltalk ... 5-17
5.2.10 Java.. 5-18
5.2.11 Scheme... 5-20
5.2.12 Logo... 5-21
5.2.13 Haskell... 5-22
5.2.14 Hypertalk... 5-23
5.2.15 Visual Basic... 5-24

5.3 Conclusion.. 5-26

6 A theory of bad pedagogical programming language
design ..6-1

6.1 Language Traps..6-1
6.1.1 Less is more ...6-1
6.1.2 More is more..6-2
6.1.3 Grammatical traps ...6-3
6.1.4 Hardware dependence ..6-6
6.1.5 Backwards compatibility ..6-7
6.1.6 Excessive cleverness...6-9
6.1.7 Violation of expectations .. 6-10
6.1.8 Dangerous side effects.. 6-13
6.1.9 Fitting the wrong model... 6-14

6.2 Summary... 6-15

7 A theory of good pedagogical programming language
design ..7-1

7.1 The issues ...7-1
7.1.1 Concepts to be taught...7-1
7.1.2 Motivation...7-2

7.1.3 Implementation issues..7-2
7.2 General design imperatives ...7-3

7.2.1 Facilitate learning..7-3
7.2.2 Maximise readability ...7-3
7.2.3 Minimise unnecessary errors ...7-4

7.3 Specific design imperatives ...7-4
7.3.1 Start where the novice is. ...7-4
7.3.2 Avoid jargon..7-6
7.3.3 Favour simplicity over power...7-6
7.3.4 Make features self-explanatory...7-6
7.3.5 Avoid unexpected results ...7-7
7.3.6 Never complicate the simplest programs ..7-8
7.3.7 Maximise "knowledge-in-the-world" ...7-8
7.3.8 Use differing syntax to differentiate semantics. ..7-8
7.3.9 Make the syntax readable and consistent..7-9
1.1.10 Provide a small number of powerful, non-overlapping features. 7-10
1.1.11 Be especially careful with I/O... 7-11
1.1.12 Provide better error diagnosis. ... 7-13
1.1.13 Choose the appropriate level of abstraction. .. 7-15
1.1.14 Use a sensible, unsurprising type system... 7-16
1.1.15 If it's not obvious, leave it out .. 7-17

1.4 Summary... 7-17

8 Case study: Applying the design process: GRAIL8-1
8.1 Design of GRAIL...8-1
8.2 General Design Principles ...8-3

8.2.1 Syntactic predictability ..8-4
8.2.2 Memetic compatibility ...8-5
8.2.3 Minimalism ...8-5

8.3 Significant Features...8-6
8.3.1 Imperative..8-6
8.3.2 No pointers or references..8-7
8.3.3 Non-ASCII characters ...8-8
8.3.4 A single numeric type..8-9
8.3.5 Static arrays ..8-9
8.3.6 Line-based strings.. 8-11
8.3.7 Idempotent I/O .. 8-14
8.3.8 Associative comparisons .. 8-15

8.4 Language Overview .. 8-15
8.4.1 Comments.. 8-15
8.4.2 Types ... 8-15
8.4.3 Values.. 8-18
8.4.4 Variables.. 8-19
8.4.5 Operators... 8-21
8.4.6 Constants .. 8-22
8.4.7 Assignment ... 8-22
8.4.8 Control structures ... 8-22
8.4.9 Subroutines ... 8-23
8.4.10 I/O... 8-25

8.5 Summary... 8-26

9 Testing and Evaluation..9-1
9.1 Questions..9-2
9.2 Testing...9-3

9.2.1 Outline ..9-3
9.2.2 Choose a language for comparison..9-3
9.2.3 A standard interface...9-4
9.2.4 Course Design ...9-5
9.2.5 Student recruitment ..9-5
9.2.6 Data collection...9-5

9.3 Analysis ..9-6
9.3.1 Analysis of code ...9-6
9.3.2 Analysis of results ...9-8
9.3.3 Observed qualitative results... 9-11

9.4 Discussion of results ... 9-13
9.4.1 Cognitive Dimensions of GRAIL ... 9-13
9.4.2 Summary of findings ... 9-14
9.4.3 Discussion ... 9-15

10 Conclusions and Further Work..10-1
10.1 Redesign of GRAIL.. 10-1

10.1.1 Problem features .. 10-1
10.1.2 Successful features ... 10-3

10.2 Redesign of the Evaluation process ... 10-4
10.2.1 Progressive evaluation ... 10-5

10.3 Further work.. 10-6
10.3.1 Further evaluation ... 10-6
10.3.2 Implications for software engineering .. 10-6

10.4 Contributions of this thesis... 10-7
10.4.1 Programming languages as user interfaces .. 10-7
10.4.2 Usability analysis of programming languages.. 10-7
10.4.3 Design framework for introductory programming languages................. 10-7
10.4.4 A new introductory programming language .. 10-7
10.4.5 Empirical evaluation of programming languages 10-7

10.5 Conclusion... 10-8

Appendix A - GRAIL Grammar ...A

Appendix B - Course Notes (GRAIL) B

Appendix C - Course Notes (LOGO).......................................C

Syntactic, Semantic and Social Issues in Introductory Programming Education

1-1

1 Syntactic, Semantic and Social Issues in Introductory

Programming Education

1.1 Introduction

Learning to program is an unnatural act. It requires novices to codify their notions

of specification and process, to acquire an understanding of abstractions for which

they may have no prior referents, and to express these concepts in a formal style of

language they have never previously encountered. In other words, it is like trying

to alter their belief system by quoting theoretical philosophy to them in

hieroglyphics.

In addition to the problems posed directly by computer programming itself, there

are social issues that can throw sizeable spanners in the works of the learning

process. Rarely addressed or even acknowledged, these social and environmental

hurdles can have considerable impact on student confidence, and on the way

students handle their interaction with computers. Students' past experience with

computers, together with their perception of computers and computer

programming, can have a substantial effect on the learning process, and on how

students handle errors and setbacks.

Given the nature and number of problems facing students learning computer

programming for the first time, there is a case for minimizing the obstacles and

maximizing student confidence in the early stages of an introductory

programming course.

This thesis describes the difficulties students face when they learn to program, and

details a method for reducing these difficulties and encouraging students to

experiment and feel confident. Based on this method, a new programming

language has been designed, and put to the test with a group of first year students

who had no programming experience. The results show that the choice of

introductory programming language can have a significant impact on the type and

quality of interaction students have with the machine.

1.2 Thesis Outline

The particular social issues that impact on learning computing are often not

directly addressed in programming courses. Chapter 2 provides an introduction

to the field of usability, and describes some of the usability issues facing computer

Syntactic, Semantic and Social Issues in Introductory Programming Education

1-2

users. Chapter 3 discusses programming languages as a special class of user

interface, with their own unique usability issues as well as many that are common

to the whole field of usability and human computer interaction.

Chapter 4 provides an introduction to the literature on learning and teaching

programming, including such issues as why learning to program is difficult, and

whether there is a problem that can be addressed – is it possible or even desirable

to make learning to program easier?

The overwhelming trend in current programming courses is to teach so-called

"real world" languages: languages that are used in industry. Chapter 5 describes

the languages used in teaching today, as well as some of the languages that have

had a significant impact on language design. The usability of these languages is

analysed for novice programmers.

The issues that face language designers, and educators responsible for the

selection of an appropriate introductory language, are discussed in Chapters 6 and

7. Specifically, Chapter 6 deals with flaws in pedagogically targeted programming

languages, and other types of languages used to teach programming, and

discusses how these flaws impede student learning. Chapter 7 constructs a theory

of language design that seeks to avoid these flaws, and to provide rules for the

construction of a pedagogical programming language that actually has a positive

impact on the learning process.

The theory of language design constructed in Chapter 7 is applied in Chapter 8,

which details the design of a new pedagogical programming language, GRAIL –

Genuinely Readable And Intuitive Language. This chapter describes the features

that were considered for inclusion in GRAIL, and presents the rationale for the

acceptance or rejection of each.

Chapter 9 describes the implementation of GRAIL together with a testing process

and results. Chapter 10 discusses the impact of the results on the theory, design,

and evaluation, highlights the contributions of this thesis, and suggests

appropriate directions for further research.

2-1

2 User Interfaces and Usability

An exploration of the issues involved in teaching computer programming

logically begins with an examination of the technical, psychological, and social

issues inherent in dealing with computers in general. Students approach

introductory programming courses with a variety of backgrounds and experiences

with computing. This thesis focuses on the particular needs of students with

limited computing background1, no programming experience, and low confidence.

In order to understand the issues which impinge on these students' learning in an

introductory course, it is necessary to understand their prior experiences with

computers and technology. The study of usability sheds some light on the

attitudes with which people approach computers, and hence the way they interact

with them. These experiences combine to form an attitude to computing which

may, in the worst cases, significantly impede the learning process. This chapter

examines the technical, psychological, and social issues created by existing

computing hardware, software applications, and social attitudes to technology.

2.1 User Interfaces

The term interface refers to communication and control. A user interface is a way of

communicating with, or using, a tool. Part of the user interface of a door is a door

handle. The user interface of an electric kettle includes the handle, switch and

spout. For a more complicated machine, the user interface is typically a complex

system of interacting parts. For example, the user interface of a bicycle includes

the pedals, gear levers, handle bars, and brake levers. Each part of the interface

depends upon the other parts, and the overall state of the system. It makes no

sense to apply the brakes firmly while still trying to pedal. Changing gears

requires temporary decrease of pressure on the pedals, but the pedals must still be

moving.

The keyboard, screen, mouse, and on/off switch are all parts of the hardware

interface of a computer. Peripherals such as CD drives, speakers, and printers can

also be viewed as parts of a computer's user interface. An additional part of the

user interface of a computer is located behind the machine, where various cables

1 While students may have used computers extensively, it is frequently in a limited sense, restricted

to email and web browsing. Such students are familiar with a very limited subset of computers'

capabilities.

2-2

and switches are located. Users might not interact with this level of interface very

often, but it is still part of the machine that must be dealt with from time to time,

such as when connecting a new printer, or reattaching a cable that has worked

loose.

Another layer of interface is the operating system. This is where the software

interfaces with the hardware and peripherals, determining the way the whole

system works together. It affects the types of actions that users may perform,

determining such details as whether two programs may be run simultaneously,

and how peripheral devices are accessed. Many of the functions of the operating

system are ones the user never directly experiences, for example determining for

how long, and in what order, processes may use the CPU.

For most users, the important part of the interface with the computer is the user

interface of the operating system. This is where users spend much of their time

interacting, and it is where many of the usability problems described later in this

chapter originate (see section 2.2). The interface of the operating system is distinct

from the operating system itself, although it may not be entirely clear where the

line is drawn. While the operating system deals with process scheduling and

device management, and maintains the file system and network connections, the

interface to the operating system gives users access to the programs they wish to

run. The interface is often intended to shield the user from the low level

technicalities of dealing with the hardware, and such interfaces are increasingly

likely to be graphical in nature. Even novice users who only use the machine for

reading email and browsing the web must still interact with the operating system

interface in order to do things like start web browsers and switch between

applications. For many users, especially novices, the interface to the operating

system is the machine.

The idea that the user interface is the machine is not unique to the world of

computing. Many motorists have little, if any, idea about the mechanical

workings of a car, beyond basic details such as where and when to add petrol and

oil. To these motorists, the car is not a complex internal combustion engine and a

collection of detailed mechanical specifications (such as the number and

arrangement of cylinders, the type of braking system, and the capacity of the

engine). Instead, it is a collection of immediately visible details, such as the colour,

the style of the seat covers, and the type of sound system, as well as the interface

2-3

itself: the steering wheel, the gear lever, the handbrake, and the clutch (if there is

one), brake, and accelerator pedals.

Similarly, the user interface of a software application is that part of the program

with which a user interacts directly.

The user interface of a program or application usually consists of menus,

windows, buttons, scroll bars, dialog boxes, and similar objects2. This is the top

level of the user interface, and it is the part of the application that the user can see

immediately when the application is run. Many applications also possess hot keys

or shortcuts which allow the application to be manipulated from the keyboard

without the use of graphical tools.

Hardware interfaces possess certain characteristics which tend to make them

innately easier to deal with than software. Hardware is visible, solid and

sometimes audible as well (for example when a hard drive spins up). It is easy to

determine whether a simple television is switched on and working by checking

whether there is a picture on the screen. Today's computer screens are not so

straightforward – if there is a picture on the screen, all is well. If there is a blank

screen, the screen saver may be on, the screen may be in power-save mode, or the

screen may be on but receiving no signal from the computer. If hardware is not

working, there are obvious physical attributes to check, such as whether all the

cables are fully plugged in, and whether the power is on. If software is not

working, even users who know enough to check cables and connections may have

little recourse.

2.1.1 Levels of interface

Computers possess several levels of interface. The hardware interface, which

includes the keyboard, mouse, screen, off button, reset switch, disk drives, other

peripherals etc, is the first level most users see ("how do I turn this thing on?").

The second level of interface with which users must contend is usually the

operating system interface, which is likely to contain windows, icons, menus,

buttons etc. Above the operating system lie the applications, which possess their

own interfaces, often with their own individual peculiarities. Some applications

2 Experienced computer users frequently use command line interfaces, but it is increasingly rare

that a novice computer user would be required to deal with a command line interface.

2-4

even possess extra layers of interface, by way of macro languages which allow the

user to access more sophisticated data processing within the program.

Each layer or level of interface adds to the mental burden imposed on the user.

Although some levels are designed to protect the user from the complexity and

technicalities of the underlying levels, it is rarely possible to make this protection

complete. For example, while the user interface of the operating system generally

protects the user from the need to know details such as precisely which brand of

video card is in use, any change to the system configuration, for example the

installation of a new piece of hardware, or a change to the display properties, may

require the user to know these details, even though they have deliberately been

concealed up to this point. This unexpected requirement to deal with the

mysterious technicalities inside the machine may make it more difficult,

psychologically, for the user to deal with the problem.

2.2 Usability

2.2.1 Definition of usability

The usefulness of a system can be divided into two components: utility and

usability (Nielsen, 1993). Utility refers directly to the functionality of a system. A

system scores well in utility if it is capable of performing the tasks it was designed

for. Usability refers to how effectively, easily, and efficiently users can access this

functionality. A system scores well in usability if users find it simple, efficient,

and pleasant to use, and if it makes users more productive. While utility is easily

measured, usability tends to be more subjective and elusive (Nielsen, 1993).

Usability is usually discussed in reference to a specific user group, such as

accountants, salespeople, teachers, etc.

Usability is user-dependent. In addition to varying between professions, age

groups, gender, and physical capabilities (such as strength, eyesight, disabilities

etc), usability varies with experience, so that a program which is extremely usable

for a novice may be much less usable for an expert. Conversely, what is usable for

an experienced programmer may not be usable for a person with no computing

experience. For example, the unix text editor, vi, has a steep learning curve, and

yet it can be used very efficiently by an expert. Vi can be confusing and

frustrating for a novice who has not yet come to grips with insert and command

modes. Nonetheless, an experienced user who is familiar with the modes and

2-5

with many of the available commands will often find it a powerful and fast way to

edit text, often faster than a "user-friendly" graphical interface3.

There is no proven technique for making a program usable. This is largely due to

the subjective nature of usability. There is no single, universal target state of

usability. Designers must first ask for whom they intend to achieve usability:

novices or experts, men or women, children or adults, particular professions, and

different cultures. For each of these groups the level of usability will be based on

different aspects of a program or tool.

Usability is not easily quantified. Some aspects, such as task completion and

speed of performance, are easily measured. Others, however, such as ease of

recovery from errors and learnability, are more subjective and harder to measure.

Nielsen proposes some important usability heuristics (Nielsen, 1993), and Green's

cognitive dimensions (Green, 1989), discussed further in section 2.5, also provide

some insight into ways of analysing usability. It is significant, though, that there

are few, if any, quantitative or universal usability metrics, despite considerable

research activity in the area. Even the cognitive dimensions, some of which are

measurable characteristics, are not black and white "this dimension is good, this

one is bad" values. Instead, they are aspects of notations and interfaces which

must be considered in tandem with the domain and the users for which the

notation is intended. Different users and different domains will have different

priorities among the dimensions, and different aspects of each dimension will be

important in different circumstances. Both Green's dimensions and Nielsen's

heuristics involve trade-offs between the different principals, such that

maximising one dimension or heuristic may decrease another.

Nielsen (1994) discusses a wide range of usability heuristics, pointing out that the

literature contains many lists of general usability principles, such as the ones

found in Polson and Lewis (1990). Nielsen also notes that, while usability

problems are fairly easily categorised as major or minor4, some problems which

fall into the minor category turn out to have a surprisingly substantial impact on

usability. It is not sufficient, therefore, to focus on major usability issues at the

expense of minor ones.

3 In part, this is because a text based system does not require the "device switching" of a graphical

interface – in other words, switching between the mouse and the keyboard.

2-6

General usability principles provide overall guidelines for software design and

evaluation, but they often fall short of providing clear, unambiguous, and

incontrovertible decisions on specific individual design questions. The principles

which seem so clear in practice are often remarkably subjective. For example, one

usability principle described by Polson and Lewis (1990) is "Provide an obvious way

to undo actions." Like many general usability principles, this one falls down on a

single subjective word: "obvious". What is obvious to developers may not be

obvious to users.

Dix et al (1998) list some general principles which support usability. These consist

of three major categories: learnability, flexibility, and robustness. It is generally

agreed (Nielsen, 1993; Norman, 1990; Landauer, 1995) that the only way to be sure

of a system's usability is to evaluate it under real world conditions. In other

words, to have it used by the intended users in their normal environment. In

addition to the feedback such users provide of their own impressions of the

systems, developers observing the users may detect problems of which the users

themselves are unaware.

Although post-production usability evaluation can successfully provide a measure

of a system's usability after it has been built, it would be more useful to have a

measure of usability which can be incorporated into the early stages of the design

phase. The growing discipline of usability engineering is working towards this

goal (Nielsen, 1993). It is clear that there is no easily-applied panacea which leads

to the design of a truly usable product.

2.2.2 Market forces

The principles of usability are incompatible, or at least partially conflicting, with

many of the forces behind software development today. In the marketplace,

features differentiate software packages from their competitors. The number of

features is easy to measure, and readily compared with competing products, so it

is used as a selling point (Norman, 1998). In addition, extra features can be used

to sell new versions of software to existing customers. As a result, the number of

features is often proportional to sales.

4 where major problems have the potential to cause significant delays or prevent task completion

altogether

2-7

Features accumulate because, as features are added to a product, old features are

rarely removed, for the sake of backwards compatibility. A new version of a

product must still be able to do everything the previous version did, even if there

are now better ways to handle those tasks. The latest version of a word processor

needs to be able to read the files produced by the previous version, in order to

allow continuing access to existing data. The problem of accumulating features is

often called creeping featuritis, and is discussed in greater detail in section 2.3.4.

Taken together, all of these problems result in systems which lack usability. Poor

usability results in frustration, feelings of inadequacy and helplessness, and a fear

of technology. Unusable systems require the user to adapt or conform to them.

An ideal system would adapt and conform to the users' needs and style of

working (Norman, 1993).

2.2.3 Essential Attributes of User Interfaces

A list of important attributes of user interfaces is relatively simple to enumerate,

but often not so easy to measure, quantify, or even recognise. It is surprisingly

difficult to design an application which possesses these general attributes, as

indicated by the magnitude of research effort dedicated to improving usability

development and analysis techniques (Green & Blackwell, 1998; Norman, 1992,

1993, & 1998; Landauer, 1995; Constantine, 1995; Nielsen, 1993 & 1994;

Schneiderman, 1987). Nonetheless, it is important to achieve consensus on a

fundamental set of qualities, even if agreement is harder to reach on precisely

what they mean and how to ensure their prominence in the development process.

The characteristics listed below are by no means exhaustive. Rather they are a

collection of the most critical qualities as generally agreed in the literature

(Nielsen, 1993; Norman, 1990; Landauer, 1995). Each element in the list is

interconnected with every other element. For example the stability and reliability

of a system has a strong impact on usability, because a system which crashes all

the time interrupts users' work and increases frustration. Nonetheless, they are

still separate principles, each of which can have a significant and distinct impact

on a user interface.

2.2.3.1 Useful

A useful user interface increases productivity and cuts down on wasted time and

frustration. Usefulness is related to utility (as described in section 2.2.1), and

2-8

requires that a system has both the required functionality – ie that it can do

everything the user needs it to do – and usability.

Ultimately the main goals of high productivity and high user satisfaction are

dependent on the usefulness and usability of the software. Useful features map

directly onto problems users need to solve, and tasks they need to perform. A

large collection of features that are only marginally useful is likely to lead to

decreased usability, as the number of options increases and makes locating a

desired option more difficult and time-consuming (as described in section 2.3.4).

The lack of standard usability testing, and the cognitive and experiential gulf

between developers and users means that user satisfaction and productivity levels

are rarely measured, and infrequently achieved. (Landauer, 1995; Nielsen, 1993;

Norman, 1990)

2.2.3.2 Usable

Usability, as discussed in section 2.2.1, is a measure of how effectively, easily, and

efficiently an application can be used. Usability is a key component of both

increased productivity and user satisfaction. Even if the software contains all the

necessary features to execute a particular task, it may still disrupt or delay the task

substantially if it is not easy and efficient to use. Although there is broad

agreement in the field of usability engineering on what constitutes usability, there

remains disagreement on specific details. Few analytic methods for determining

usability5 based on a design are sufficiently broad to be applied to all user

interfaces, and yet specific enough to give feedback on individual features and

design decisions. As a result, usability analysis relies on usability testing

involving genuine users, or a representative set of users.

In general, usability testing involves a high degree of subjectivity and variability.

It is frequently difficult to apply usability testing to enough users, under a broad

enough range of situations, to analyse an interface in a fully objective, statistically

valid fashion. Test subjects are often not entirely representative of the ultimate

user community, if only because user communities can be unmanageably large

and varied. Furthermore, some features of an interface can be tested effectively by

any user, other features need to be analysed by specific real users under real

conditions, since some features will only be used by specific groups of users, and

5 Green's cognitive dimensions, discussed in section 2.5 offer an analytic approach to usability, but

a full analysis is extremely time -consuming.

2-9

other features may be used in different ways by different users. For example, a

class list containing assignment marks may be used in one way by those entering

the marks, and in a different way by users who need to process the marks. If

testing is only conducted using users entering the marks, the display may be

biased towards the needs of those users, and a usability flaw for users trying to

process the marks may not be detected until the product is released.

Applications – and the features that get added to them – are frequently more

appealing to the programmer if they are easy to create. Unfortunately some of the

most usable and helpful features of an interface are not the simplest to code. For

example, a help system which describes what each button does is relatively simple

to write – you simply list all the buttons and menu items, and describe them one

by one. In contrast, a help system which relates directly to what the user wants to

achieve, rather than to how the system works, is much more useful6 and

correspondingly more difficult to create. Building usable help utilities requires

knowledge of how users work, what they typically want to get done, and what

terminology they use, rather than knowledge of what the program does. As a

result, applications often end up being easy to create rather than easy to use

(Norman, 1998).

2.2.3.3 Human-centred

A usable interface is designed to suit the needs of people, rather than requiring

people to adapt to the quirks and inflexibility of the machine. Because machines

are less adaptable than people, it is simpler to design systems that place the

burden of flexibility on humans. In this way, features that are difficult to

implement need not be included, instead they are passed on to the user in the

form of work-arounds (extra steps the user must take in order to circumvent the

shortcomings of the system). A human-centred system requires careful attention

to user's requirements and the way people think and work.

In contrast, machine-centred applications are designed around the capabilities and

requirements of the machine or the technology, rather than those of the user.

Technology-centred design led to the power switches on the first personal

computers being at the back of the machine: awkward for users to reach, but

6 ...because the user can look up how to create a cross-reference, rather than needing to know in

advance that cross-references are created using "power fields", or whichever proprietary

technique is used in a particular word processor...

2-10

easiest for the switch to connect to the hardware. User-centred design moved that

switch to the front of the machine7 where a user can reach it easily and

conveniently.

Some examples of human-centred design are:

• Lengthening a power cord so that a machine can be positioned where it is

most useful for the user, rather than restricting the location to within a small

radius of a power point.

• Positioning a "close window" button on a software application away from the

"make full screen" and "iconify" buttons, to make it less likely that users will

inadvertently quit an application by hitting the wrong button.

• Attaching the power cord on an electric kettle to a detachable base, so that the

kettle need not be unplugged in order to be taken to the tap and refilled.

• Video recorders which have an on-screen display on the television screen,

rather than relying on the (often distant) digital readout on the front of the

video recorder.

2.2.3.4 Task-oriented

A system which is task-oriented matches user needs closely, providing an

efficient, intuitive, and effective way of achieving users' goals. Creating a task-

oriented system requires the designer to be familiar with the problem domain, and

with the tasks users need to be able to perform with the system. The system

should not merely re-implement on a computer those tasks which users currently

perform manually (Nielsen, 1993), rather it should enhance and support the task,

using the power of the machine to cut down on the tedious and error-prone

aspects of a job.

A truly task-oriented system will provide all the information users need when

they need it, and in a useful and logical form. It will anticipate the actions users

are likely to want to perform at each step in the process, and provide quick, easy,

and efficient access to those actions, while maintaining flexibility. In cases where

the anticipated action is not the action the user wants to perform, it will be simple

7 On many machines the internal power switch is still at the back, but it has been connected to a

front-facing switch.

2-11

to choose the desired action, thus allowing users to choose their own paths

through the system where necessary.

Examples of systems which are not task-oriented can often be found in software

help systems. Help systems are frequently laid out in the same fashion as the

software, with a paragraph or two allocated to each button and menu option in the

program. A task-oriented help system, instead of addressing program features

directly, would address tasks the user might need to carry out.

Such a help system for a web browser might have a section on how to speed up

the downloading of web pages (by turning off the automatic display of images),

while a program-oriented help system might instead describe the Preferences item

on the Edit menu. While both systems may eventually provide the same

information, the program-oriented system requires the user to know in advance

where the desired option is located, and how to solve the problem, while the task

oriented system starts with the problem, and describes how to fix it.

While a good interface is designed around the tasks the user needs to perform,

many existing interfaces are program-oriented. A program-oriented interface is

designed to use the functions of the back-end program, compared with a task-

oriented interface which is designed to make users tasks easier and more efficient.

In the program-oriented situation, menu items generally map directly onto

function calls on a one-to-one basis. The labels used in the interface reflect the

underlying functions, rather than the terminology and expectations of the users.

For example, commercial databases are often set up to retrieve files based on

membership or identification numbers rather than surnames, because some

database systems only allow records to be retrieved based on a single key, and

while identification numbers can be guaranteed unique, surnames cannot.

Similarly, accounting systems often display information poorly, showing the

information contained in a single record and not allowing easy comparison with

other records, or with totals and averages, because they are stored in different

places in the underlying program.

2.2.3.5 Consistent

Nielsen (1993) describes several different types of consistency that must all be

taken into account in order to maximise the usability of a system. Consistency is

important between features in a program; between programs; between the

2-12

program and the help system, manuals, and training materials; and between the

program and what users already know.

Consistency requires information to be presented in the same way throughout the

entire system. While this does not preclude the use of multiple terms in a

searchable index (to maximize the chance of users finding the topic they are

seeking), it does mean that the topics themselves should use terms which are

consistent with the labelling within the program. For example, if a help file refers

to a menu item on a submenu, the menu item, the submenu, and the main menu

should all be referred to by the titles the user sees on the screen. These titles

should also match the user's terminology rather than the terminology of the

interface designer. Consistency with what users already know is more difficult to

achieve, particularly when the likely set of end-users is not homogeneous.

User interfaces are frequently inconsistent in a number of different ways. A

program may not be consistent with its online help systems or its hardcopy

manual. For example, the help system may not use the same terminology as the

interface itself, or the help may refer to an older version of the program, or to the

proposed design of the program, rather than the current version.

The program may not be consistent with the operating system. For example the

positioning of menu items may not be consistent with the operating system

standards: "cut", "copy", and "paste" may be on a "text" menu rather than the more

standard "edit" menu, or the labelling of buttons may not coincide with system

standards (for example "accept" and "reject", rather than "ok" and "cancel").

Terminology used in software interfaces is frequently inconsistent with the

terminology in the target domain, because it refers to the way the program

operates, rather than to the way the user works. For example, a secretary trying

to send his boss a document via email may be perplexed to find that his email

program does not offer a "send document" option. Unless the secretary is aware of

the relevant computing terminology (adding "attachments"), it may prove difficult

to send the document.

2.2.3.6 Robust

Robustness has two facets. Firstly, the program itself must be internally robust: it

should not crash or exhibit strange behaviour. A program with otherwise high

usability which is prone to crashing will be frustrating and confusing for users,

and is very likely to cause lost or wasted work. For example, instability can lead

2-13

to a program crashing just after a user performs a particular action. Human

beings are accustomed to perceiving cause and effect relationships where effect

follows cause closely (Philipchalk & McConnell, 1994), so that the action

immediately preceding the crash is perceived as the cause of it. Users may

subsequently be reluctant to perform that action, even if it is unrelated to the cause

of the crash.

A software crash, even if the operating system is left unscathed, may corrupt the

files being worked on at the time of the crash, sometimes irrevocably destroying

information. This can happen even when users save their work regularly,

particularly if the crash happens to occur during saving. In short, unstable

systems mean that there are few, if any, ways in which users can reliably protect

themselves from lost or corrupted data.

The second critical facet of robustness is the program's response to incorrect or

unexpected behaviour on the part of the user. It is not possible to stop human

beings making mistakes. Research has shown that even expert users make

frequent errors in the course of their work (Norman, 1990). Interface designers

need to take this into account and make errors easily reversible. Unexpected or

erroneous behaviour on the part of the user should be handled gracefully – in

other words, errors should not be catastrophic, or particularly intrusive.

Robustness can be difficult to achieve in software without extensive testing, as it is

rarely feasible to predict all possible user actions.

2.3 Technological barriers to usability

2.3.1 Lack of reliability

Reliable systems meet user expectations, and behave in a consistent, predictable

manner. Lack of reliability means that actions do not produce the same response

every time. In the case of a simple product such as a light bulb, it is fairly trivial to

define what is meant by reliability – the bulb should light up when switched on,

consistently and with a predictable intensity. There is some latitude, however, in

determining how long a bulb should last in order for it to be truthfully called

reliable.

Software, though, exhibits many different forms of unreliability. Failing to

function at all under some conditions is clearly unreliable (although some

programs are reliably unreliable, in that they usually fail under the same

2-14

conditions). However, a tool that does function, but not necessarily in the same

way every time, is also unreliable, even though it may still get the job done –

eventually.

Software sometimes crashes, ceasing to work entirely. It may disappear from the

screen unexpectedly, or simply freeze, failing to respond to user commands.

Software crashes often result in lost or corrupted data, sometimes to the extent

that even saved work is lost.

Many software products contain inconsistencies and interface quirks which lead to

unexpected behaviour. In most Windows 95 dialog boxes, the "cancel" button

undoes any actions performed in that box. In some, however, such as the "Display

Properties" dialog box, the "cancel" button sometimes performs the same function

as "ok" (generally when the "apply" button has been used), and actions are not

undone. Because this happens silently, it is not always easy to tell whether actions

have been cancelled or not, which can lead to confusing and unexpected

outcomes.

Unexpected behaviour can cause lost data or settings. In addition, it can result in

considerable time spent locating the cause of the problem, as the results of the

behaviour may not be recognised or even visible at the time. In consequence the

origin of the problem can be difficult to trace, since any recent action could be the

cause.

Sometimes inconsistencies and unexpected behaviour are the result of errors in the

software, rather than poor design. These errors can be even more difficult to

anticipate and allow for, as they are often dependent on the state of the system,

and can appear random. They can be influenced by how much memory is being

used, which other programs are also being run, whether there are any external

influences such as the state of the network, and whether any local printers are

behaving correctly, etc. If the system appears unpredictable, users cannot be

confident of the results of their actions, even if they perform exactly the same

actions each time.

Different programs, for example two different word processors, are often unable

to exchange data without unwieldy and error-prone procedures to force files into

the correct format. Even different versions of the same program may not be able

to communicate effectively. Version 2 of a word processor may not be able to read

files created by versions 3 and beyond. This can lead to problems between a user's

home machine and the systems in the workplace, which may not be running the

2-15

same software, or the same versions of applications and operating system. It can

also make exchanging data between colleagues hazardous and error-prone.

Ultimately, users cannot be sure of being able to transfer data between

applications, to other colleagues, to other machines or to other platforms.

All these problems combine to mean that the user cannot rely on being able to use

programs successfully. It may be difficult, if not impossible, to achieve the desired

outcome when a bug in the application is encountered, or when two different

applications prove to be incompatible, or when data is irretrievably lost or

corrupted. If the end result is achievable, it is often through compromises and

work-arounds which are time consuming and frustrating. For example: printing a

file one page at a time until the page which crashes the system is encountered, and

then editing that page until the offending section has been removed.

It also becomes difficult, if not impossible, to determine the behaviour of an

interface element based on other, familiar objects. Inconsistent interface behaviour

can lead to incorrect, though plausible, assumptions. In some cases, opening an

icon in Windows 98 requires a single click, in others a double click. Without

knowing which icons are "special" (and hence require only a single click), the user

has no way of knowing how many clicks a new icon requires. To make matters

worse, double clicking on an icon which requires a single click may start an

application twice, or have some other unintended effect if the second click is

interpreted by the application as happening somewhere inside its borders.

In the short term, these usability issues lead to disruption and lost work. In the

long term they may lead to false cause-and-effect relationships in users' minds,

and to a perception that technology is impossible for the individual to master.

Human beings naturally try to make connections between incoming stimuli, or

perceived events (Philipchalk & McConnell, 1994). In order to make sense of the

world, we try to interpret things and construct cause-and-effect relationships

which explain the events we perceive. When a machine or application crashes, the

user typically asks "What did I do?" This can lead to false cause-and-effect

relationships being built up, based on the last action that was performed before

the problem occurred.

 Applications and operating systems form such complex interactions that a system

can become unstable and crash due to a problem that actually occurred some

considerable time earlier. Worse still, problems can sometimes occur in an

application layer the user never sees. Nonetheless it is common, and

2-16

understandable, for the user to assume some responsibility for the problem, and to

believe that the most recent action caused the crash.

When only one person is using the machine, then if a user is to blame, the identity

of that user is obvious. Because "computers don't make mistakes", it must clearly

be something the user did wrong. Depending on exactly when the problem

occurs, it can appear that some valid and reasonable action by the user was the

cause. Not only can this lead to the avoidance of valid behaviour, it can also

further erode users' confidence and faith in their own abilities and experience.

Because the reason for a problem is frequently impossible to detect, as far as users

can see, actions which seem valid and logical cause significant problems in some

situations, for no apparent reason.

2.3.2 Lack of standardization

Lack of standardization can cause problems at many different levels. At the

hardware level, few personal computers are truly identical. The use of many

different components manufactured by a range of different companies can lead to

differences in configuration that can in turn impact on the way the operating

system and applications behave. In practice, this means that users who have come

to grips with their own machines may not be able to transfer those skills to dealing

with colleagues' or friends' machines. In the same office, printing to the same

printer from a different machine running the same operating system may require a

subtly different approach. Installing new software successfully on one machine

does not mean that it will be possible to install that software successfully on the

next.

At the operating system level, the lack of standardization affects the behaviour of

similar objects within a single operating system. For example, it is not always

clear whether a "tab" can be clicked on, and whether clicking on one tab in two

rows of tabs will change the order of the rows. Although these are nominally

standardized within an operating system, in practice applications frequently do

not adhere to the standard, even when produced by the same software company

that wrote the operating system.

The behaviour of objects on different versions of the same operating system may

also be affected. For example, icons that require double clicking in one version but

only require single clicking in the next, or pull down menus that only remain

visible when the mouse button is held down, versus menus which stay down until

2-17

explicitly dismissed. Small individual differences may be relatively easily

detected and allowed for. Collectively, though, they can be frustrating and time-

consuming to deal with. The difference between menu behaviour in the various

Macintosh operating systems and Windows, for example, may be considered

trivial, but because it is an oft-repeated action that becomes well-known and

habitual, it can be disruptive and awkward to switch systems.

At the software level, lack of standardization is an even greater problem for users.

Switching between two different software packages, say a word processor and a

spreadsheet, can often entail handling different commands for the same simple

operations. Menu structures frequently differ from one application to the next, so

that finding a particular item, such as "insert page break", may be in the "insert"

menu in one application, and the "text" menu in another.

2.3.3 Inherent complexity

Computers are inherently complex. This is, in part, because they are sophisticated

calculating machines which have no visible mechanism from which their functions

may be deduced. They are classic "black boxes", where the user performs some

action, akin to pulling a lever on a magic box, and the mysterious machinery

produces an impressive result, with no clues as to how the result was obtained.

In addition to the "black box phenomenon", today's operating systems and

software attempt to be general purpose devices. Instead of focussing on one task

and fitting each machine perfectly to its assigned task (Norman, 1998), computers

and software are designed to be able to do every possible task that marketing

departments believe might sell.

Although the idea of computers has been around for over 100 years, it has been

argued that computers are sufficiently different from anything else with which

people are already familiar that there exists no effective conceptual model

(Dijkstra, 1985). Some metaphors work well in limited circumstances, such as the

notion of a computer being like a brain, a calculator, or a desktop, but such models

invariably cause problems where the metaphor breaks down. For example, a

"brain" would truly understand a question posed in English rather than some

2-18

artificial query language8. A calculator only covers the basic computational

abilities of the machine. A real desktop cannot find you a file in Sweden when

your desk is in Australia, and will not lose your work when the power fails.

2.3.4 Imposed complexity (featuritis)

Imposed complexity, often dubbed creeping featuritis, is prevalent in the computer

world. Features sell. Number of features is an easy (if not meaningful) way of

comparing different software packages for the same task. Reviewers, marketing

departments, and developers all perpetuate this form of measurement, as it is easy

to calculate, easy to publicize, and easy to compare.

New features are also an important way of selling "upgrades" – new versions of

the software which are marketed as essential due to the new and impressive

features they contain. Selling upgrades is a cheap and effective way to retain

market share. This approach reduces the need for the research, development, and

innovation that would be necessary for the successful production of entirely new

software. It also allows the vendor to capitalise on the marketing that was done

for the previous version, and gives access to an existing client base. Compared

with starting from scratch, selling upgrades is a simple way for software vendors

to stay in business.

Users also want new facilities. A large user base means large numbers of requests

for different features. Even if a small percentage of the requests are attended to,

that can add up to many new features. Features are often added because they are

easy to implement, rather than because they are useful.

Careful design is required to organise features in a usable, logical way, but

features are often added piecemeal, in a haphazard fashion (Constantine, 1995).

This is frequently because features are added after the design process, or for

reasons of marketing rather than usability.

More features lead to greater complexity. The more features there are in a single

piece of software, the more difficult it becomes to locate particular features

because a large number of facilities leads to a larger, more confusing search space

each time the user needs to track down a particular feature of the program.

8 Although natural language query systems are present in many current software packages, such as

word processors, they are as yet very primitive, and lack robustness compared to human

understanding of natural language

2-19

Shortcuts become less intuitive because the obvious shortcut keys are all taken.

Control-i, control-b and control-u for italics, bold, and underline respectively, are

simple shortcuts which are also reasonably mnemonic (once the concept of the

control key has been mastered). However, the use of control-u for underline

means that it is no longer available for "undo" (which is often an arbitrarily

assigned control-z9). Menus become longer, and submenus proliferate, leading to

numerous different "logical" locations for a single feature, always assuming that

there is logic to the placement of features, rather than mere haphazard

accumulation.

More features lead to greater strain on human cognitive abilities – remembering

which menu contains a particular function, interpreting command names (short

names are often given to complex functions), etc. Learning to use a package is

therefore more difficult.

2.4 Psychological barriers to usability

2.4.1 Bad experiences with technology in general

Technology can be complex, hard to use, unreliable, and intimidating. Devices

such as video recorders, photocopiers, microwaves, washing machines, and

stereos are notoriously difficult to use (Norman, 1990). This leaves users in the

embarrassing position of requiring help to do conceptually simple things. ("I just

want to copy this one page!") To add to this discomfort, the helper is frequently

someone who does find it simple (or has done it so many times before that she

makes it look simple), reinforcing the message that the user is stupid for not being

able to do it. Such helpers will often inadvertently compound this impression by

using accusatory language such as "You pressed the wrong button!", implying that

the user is at fault.

2.4.2 Bad experiences with computers in particular

Like other technologies, computers can be complex, hard to use, unreliable and

intimidating. Working with computers often leads to lost work, wasted time and

frustration, even for experienced and highly proficient users. Less experienced

9 Control-z for undo, while not particularly mnemonic, is at least a widely-used standard on many

systems.

2-20

users can find that the novelty and value of computers are quickly negated by the

drawbacks, both physical and emotional. Computers are often set up in an

unergonomic fashion, leading to uncomfortable working positions that can cause

serious pain long after the work has ceased.

In addition to seeming complex and difficult to use, computers appear to make

random, unpredictable errors, often due to a problem which occurred some time

ago and made the operating system or application unstable (see section 2.3.1). This

reinforces the idea that understanding the computer is at the very least beyond the

user’s abilities, if not utterly impossible. Those who do seem able to understand

and tame the beast are accorded “wizard” status and treated with considerable

awe. By using jargon, typing fast, and failing to explain their actions, wizards

compound this impression, effectively waving a magic wand and making the

problems disappear.

These experts whose hands fly over the keyboard are particularly intimidating – it

seems to take them no time to fix apparently insurmountable problems. The user

is forced to choose – it may be possible to see the keystrokes, or see what is

happening on the screen or interpret what the wizard is saying, but it is rarely

possible to do all three at once. Even if the user recognizes this and decides in

advance to concentrate on a single facet of the performance, it is rarely possible to

identify and remember exactly what is happening.

Experienced computer users forget what was difficult to learn (or may never have

had the same problems) for two main reasons. Firstly, experienced computer

users have, by definition, been using computers for some time, and are temporally

far removed from their novice days. Secondly, the computers that experienced

users learnt on may bear little or no resemblance to the computers in use today.

Today's Windows expert may not have learnt to use Windows from the position of

a novice, having already been familiar with other interfaces that were related,

possibly ancestral, to the current version.

Computers introduce many unfamiliar concepts with which users must grapple –

such as file formats (Word documents, text files, Rich Text Format, PostScript...),

directories and file systems, the web and the internet. File formats are particularly

troublesome, since every time a user looks at a file, it is clearly readable. Because

applications hide the details of the file format from users deliberately, the concept

of different formats can be difficult to grasp – users know that they can read the

2-21

file, and can't understand why others may not be able to, particularly when they

have what seems like the same software (but is, perhaps, a different version).

Manuals are written by experienced computer users10. Support staff are

experienced computer users. In addition, computer systems abound with

accusatory error messages which imply the user is at fault, such as "User

Application Error", and "Windows was not properly shut down..."11. Manuals are

product-centric rather than task-centric (they describe what each menu item does,

rather than how to accomplish a certain task). Manuals, support staff, and well-

meaning friends assume certain "basic" capabilities, such as the mysterious ability

to "double-click". Some software upgrades change the functionality of familiar

packages. Users are told "This will be better" but it often proves to be worse. All

of these difficulties combine to make novice computer users feel inadequate and

intimidated.

2.4.3 Intimidating jargon

The world of computers is, naturally, rife with jargon. It is necessary for any new

discipline to find convenient ways to express new concepts. Jargon is a useful

kind of shorthand which enables experts to communicate with each other

accurately and succinctly. Used carelessly, though, it can alienate those who are

unfamiliar with it, excluding them from the discussion.

Jargon comes in two main forms: new and unfamiliar words, and old words used

in new and unfamiliar ways. While strange new words can be disconcerting,

frustrating, and difficult to deal with, familiar words can be even more confusing

when used in unexpected ways.

Jargon makes computers even less accessible. What does "double click" mean?

What's an "icon"? A "font"? A "style"? A "modem"? An "intranet"? A "browser"? An

"applet"? What's a "window"? What's a "menu"? What's the difference between a

"button" and a "tab"? What's "scrolling"? What's "dragging"?

10 The technical writers who write software manuals may not be experienced in the particular

application they are documenting, but they are usually experienced computer users, who may be

out of touch with the knowledge and skill levels of novice computer users
11 Which, frustratingly, often appears after Windows has crashed and become incapable of being

properly shut down.

2-22

Help systems, manuals and support people often incorrectly assume familiarity

with basic terms, such as "right click", "select", "screen saver", "spreadsheet",

"scroll bar", etc.

Jargon used carelessly can be demoralising, as users become aware that they are

expected to know terms that they do not, and as attempts to learn lead to more

jargon, sometimes in a circular fashion. Seeking explanations of the jargon can be

intimidating, as it requires the confession of ignorance. Experts can often be

impatient with users who do not understand apparently simple (to the expert)

words. Even given a patient and understanding expert, the response may

inadvertently contain extra jargon, which can be even more demoralising – to ask

for an explanation and receive one that is unintelligible is likely to discourage

further requests.

2.4.4 Learned helplessness

Continually encountering problems that one is unable to fix (or even understand)

can lead to the expectation of personal helplessness. Users cease to try new things

or to solve problems because they "know" they will fail. This phenomenon is

known as learned helplessness (Norman, 1990), because people learn that they are

helpless under certain circumstances, and subsequently assume that they are

helpless under all similar circumstances. As a result, they stop trying.

Continual problems with computers that require remedies the user does not

understand can lead to the assumption that all problems with computers will be

insoluble without expert help. If printer problems repeatedly lead to a user being

unable to print without seeking technical support, it is not uncommon for the user

to seek technical support before even trying to print.

Many aspects of the computing world encourage learned helplessness.

Incomprehensible error messages leave the user confused and aware of their own

"ignorance". Knowledgeable support staff, who fix problems with a rapid series of

commands that the user does not understand, compound users' impressions that

solving the problem is beyond them. Software that is unintuitive and unusable

makes it difficult for users to work out how to do new things on their own, leaving

them with the impression that they will always have to ask for help in order to

achieve something different.

2-23

When "user-friendly" software, marketed directly at novice computer users,

proves difficult to understand, users develop the impression that they are "not

good with computers". Help systems which are couched in jargon, or which fail

to contain the answers users are looking for, also compound learned helplessness.

They teach users that attempting to solve the problem with the resources available

to them is doomed to failure, so there is no point in trying (Norman, 1990).

Learned helplessness erodes user confidence and motivation. It produces users

who call for assistance every time something goes wrong, or even when they see

something unfamiliar on the screen.

2.4.5 Cognitive dissonance

New information which conflicts with prior knowledge causes a feeling of

discomfort known as cognitive dissonance (Corsini, 1994). This psychological

discord can cause the new information to be rejected or to be altered to fit the

existing cognitive structure. Sometimes dissonant information will simply be

ignored, due to "belief bias" (a tendency to discount the significance of dissonant

information (Evans et al, 1983)). Facts which fit our preconceptions are more

likely to be remembered and accepted than facts which conflict with our view of

the world. As a result, learning something which conflicts with what is already

known is particularly difficult. It will be an extra effort to process and remember

it correctly.

In general, people seek to minimise cognitive dissonance, so as to feel less

uncomfortable. This means either making the new information "fit" existing

knowledge, or avoiding the anomalous situation and forgetting the inconsistent

information.

Cognitive dissonance arises in computing when familiar concepts are represented

in unfamiliar ways - for example, * used for multiplication, or = used for

assignment rather than equality.

2.4.6 False consonance

In contrast to the phenomenon of cognitive dissonance, sometimes new

information looks familiar when it is, in fact, subtly different. This type of

situation can be referred to as false consonance, and can also make learning

particularly difficult. The very familiarity is misleading, suggesting that there is

nothing new or different to contend with, when in fact there is.

2-24

False consonance can occur when metaphors break down. For example, consider

the metaphor of a file. Computer files behave in many ways which are different to

the paper files to which they are allegedly analogous. Paper files do not need

special applications in order to be accessed or read. A single sheet of paper can

easily be removed from a paper file, and different files may be recognisable from

their colour, shape, and any visible attributes of the contents, such as size or

quantity. On a computer, the only visible attributes of files are the names, and

sometimes the types of application with which they were created.

False consonance can raise false expectations, leading users to believe that the

system works in familiar and manageable ways. Creating and then violating

reasonable expectations leads users to believe that they cannot rely on their own

knowledge, expectations, or assumptions. Continually behaving in an

inconsistent and unpredictable manner encourages learned helplessness (see

section 2.4.4), by convincing users that they are not equipped to interpret the

machine's behaviour on their own.

2.4.7 Fear of breaking something

Many new computer users are afraid that, if they do something wrong, the

consequences will be catastrophic, not just for their data, but for the entire

machine, or even beyond, now that computers are frequently universally

networked. The recent global difficulties with email viruses, such as Melissa

(Melissa, 1999), have shown that innocent computer users can unintentionally

bring down their friends' (or even the worlds') systems.

Even without the help of viruses, email can have unintended consequences. For

example, sending large files (executables or images are common culprits) can

crash some mail systems.

Although the fear of breaking the data, the machine, or the entire network is

reasonable, and often based on realistic scenarios or users' own experiences, this

fear is unproductive, and can impair productivity and learning.

2-25

2.5 Cognitive Ergonomics

2.5.1 Cognitive Dimensions of Notations

"A notation is never absolutely good, therefore, but good only in relation

to certain tasks." (Green, 1989)

In 1989, the fledgling field of Human Computer Interaction (HCI) lacked powerful

generalisations, and practical techniques for analysing usability (Green, 1989).

Green's paper on cognitive dimensions of notations (Green, 1989) describes one of

the first techniques for an objective and rational system of analysis.

The cognitive dimensions of notations (CDs) are a collection of usability aspects of

notations. Each dimension has an independent impact on user experience. Green

and Blackwell (1998) describe 13 dimensions which can be used collectively to

develop a profile of a notation. Each dimension is inherently neither good nor

bad, since different tasks require different profiles. In addition, trade-offs are

likely, where an ideal profile with respect to a particular dimension may require

sacrifices in other dimensions. Different dimensions will have different priorities

depending on the task to be tackled.

Cognitive dimensions deal with the notation alone, not the environment for

manipulating the notation, although the environment clearly also impacts on user

behaviour.

A full list of the cognitive dimensions can be found in chapter 3, where those

dimensions most relevant to programming languages will be discussed in more

detail.

2.5.2 Knowledge-in-the-world

Norman (1993) defines knowledge-in-the-world as knowledge which need not be

remembered, since it can easily be extracted from the world around us.

Knowledge-in-the-world is defined in the context of concrete appliances that can

be manipulated physically, such as door handles, stereos or water taps. For

example, a door which has no handle, that has a flat, hand-sized plate where the

door handle would normally be, clearly indicates that it should be pushed, not

pulled. In contrast, a door which has handles on both sides, but which can only be

pulled from one side, is misleading.

2-26

The same principle can be applied as a useful usability metric for software user

interfaces. The more information a user must remember in order to use a program

effectively and efficiently, the more difficult and stressful it becomes to perform

the necessary tasks.

Knowledge-in-the-world, in this context, can be defined as clues given by the user

interface which indicate how to perform particular actions. In the simplest case,

an interface containing a large button marked "RUN" in the centre of the screen,

whatever its other merits or drawbacks may be, does not require the user to

remember how to run the program. This concept will be discussed in more detail

in Chapter 7.

2.6 Summary

The usability issues discussed in this chapter provide insight into the social,

psychological, and technical issues confronting students learning to program for

the first time. The technology students use every day is frequently not well

designed, not usable, nor user friendly. Chapter 3 discusses how these usability

issues apply to programming languages.

3-1

3 The programming language as interface

3.1 What is a programming language?

3.1.1 Definition

A programming language is a set of symbols and rules for writing computer

programs. In other words, a programming language is a means of controlling the

machine, to make it perform some particular task.

Programming languages are very diverse, ranging from macro languages within

spreadsheets and word processors, to mark-up languages designed for document

formatting, such as LaTEX (Lamport, 1986) and HTML (Raggett, 1998), as well as

more formal and common programming languages such as C (Kernighan &

Ritchie, 1988), FORTRAN (Bellamy, 1989), Java (Arnold & Gosling, 1998), or

Haskell (Hudak & Fasel, 1992). Programming languages are usually text-based,

although there are also visual programming languages that are primarily

graphical in nature, such as Hank (Mulholland & Watt, 1998).

Programming languages have evolved rapidly from punch cards in the early days

of computing, through assembly and machine languages, to high level and very

high level languages, often known as 4GLs (fourth generation languages). Much

of the evolution of programming languages was strongly influenced by the

hardware available at the time. For example, characters in programming

languages, with a few exceptions such as APL (Iverson, 1962), have long been

limited to those available on conventional keyboards. Part of the reason

programming languages are traditionally text-based is that early computer display

screens had limited, if any, graphics capabilities. Some languages, even relatively

high level languages, retain constructs and keywords that refer directly to

machine architecture, such as car and cdr in LISP (Contents of Address Register

and Contents of Decrement Register, respectively).

Almost every domain into which computers extend has its own domain-specific

programming languages. From visual languages designed to help psychology

students develop programs to assist them in their research such as Hank

(Mulholland & Watt, 1998), or languages with visual tools whichencourage

children to interact in creative ways with computers, such as LOGO (Papert, 1993),

to purely textual languages, such as assembly language, used for maximum speed

3-2

and efficiency when programming micro-controllers, programming languages

have been developed for a wide range of programmers, environments, and

domains.

Domain-specific languages are generally designed to possess the features that are

most useful in the intended domain. A programming language that is designed

for creating simulations of electrical waveforms is likely to include built-in graph

drawing functions. A language designed for creating graphical user interfaces

will have its own built-in techniques for creating windows, buttons, menus and

dialog boxes.

3.2 The connection between language and interface

Programming involves several levels of user interface. The development

environment, language, and compiler/interpreter are each separate levels of

interface that the user must master in order to program successfully.

3.2.1 Language

As discussed in Chapter 2, a user interface is a mechanism for communicating

with, or controlling, a tool. A programming language is a way of communicating

with and controlling a computer, and therefore fits the definition of a user

interface.

A programming language differs from a typical user interface in that it is less

immediate and more complex – a programming language allows the programmer

to create a list of commands to be executed, while a graphical user interface

enables the user to manipulate objects directly. In many graphical interfaces,

when a button is clicked on, some visible changes happen immediately, so that the

button appears to have been physically depressed – although some actions may

have less immediate feedback, such as changing a setting on your window

manager, or creating a new text paragraph style in a word processing document.

Only some statements in a programming language have clear and immediate

feedback (mostly output statements), and the feedback is only immediate if the

3-3

language is interactive. On the other hand, visual languages contain some of the

direct manipulation and feedback aspects of graphical interfaces1.

Thus a programming language is not, in essence, different from a typical user

interface. Languages may have received less attention as user interfaces because

they were originally intended for advanced computing experts and the focus was

on speed, efficiency, and power, rather than on usability and cognitive

ergonomics.

In order to program, the student must learn to manipulate the symbols in the

language correctly, in much the same way as a word processor requires a beginner

to master its symbols: menus, buttons, mouse control, and shortcuts.

3.2.2 Development environment

The first thing a programmer must interact with is the development environment.

This may be a simple text editor, an interactive interpreted line-by-line interface,

or a fully integrated development environment.

The operating system also forms a small part of this level of interface, as it must be

dealt with on some level, if only to access the development environment. In the

case of graphical environments, the operating system impacts on the entire editing

process, dictating the operation and sometimes arrangement of menus, menu

items, buttons and scroll bars. Some interactive programming environments, such

as those commonly used for Prolog (Clocksin & Mellish, 1981), where the

language is interpreted line by line, have a simpler and arguably less powerful

development environment which is an integral part of the interpreter.

3.2.3 Compiler/Interpreter

In addition to the language and the development environment, learning to

program requires mastering the language compiler or interpreter. For the

purposes of this thesis, the term “compiler” will be used collectively to denote

whatever compilation or interpretation systems students must interact with,

unless the difference is significant. Mastering the compiler involves learning how

to pass it code, and working out how to interpret the responses given as result

codes, error and warning messages, etc. The student must also know what files, if

1 such as the ability to manipulate objects with the mouse, creating data flow and object

dependencies without using text

3-4

any, are created by the compiler, and how to invoke a program once it has

compiled successfully. Once a program can be run, any runtime feedback must

also be interpreted and dealt with.

3.3 The programming language as interface

3.3.1 What programming languages should be

As user interfaces, programming languages should possess the desirable attributes

of user interfaces described in section 2.2.3: useful, usable, human-centred, task-

oriented, consistent, and robust. The particular ways in which these attributes

apply to programming languages are described in detail in the following sections.

3.3.1.1 Useful

Like other user interfaces, programming languages need to be useful, increasing

productivity and efficiency. A useful programming language contains all the

capabilities necessary for the domain(s) to which it will be applied. It is well

suited to its target user group, and appropriate to the problem domain. While

extra features in a programming language can increase the power and flexibility of

the language, they can also slow down compilation, increase the complexity of the

compiler, and make the language harder to use. There are many such trade-offs,

and the appropriate design decisions depend on the intended users of the

language (novices versus experts, domain specialists versus expert programmers,

etc), and the target problem domain.

For example, Hank (Mulholland & Watt, 1998), a programming language intended

for psychology students with little or no programming background, emphasizes

the sort of statistical computations that psychologists are likely to need. Hank also

uses a visual format that allows the programmer to fill in the required constructs,

rather than requiring that the syntax of the language be memorized.

This technique has been very effective for use in Hank's intended environment

(Collins & Fung, 1999), but probably would not be as effective for the use of, say,

engineers programming microcomputers. For example, an engineer programming

a chip with only 256 bytes of on-chip RAM must ensure that the code is as small

and efficient as possible, particularly if the application is time critical. Here the

emphasis shifts away from usability and ease of programming and on to

3-5

producing code that will be small when compiled into assembly code, and

therefore will fit into the on-chip memory.

3.3.1.2 Usable

The usability of a programming language inevitably impacts on the productivity

and efficiency of the programmer. As a programming language has two parts –

the syntax/semantics of the language itself, and the usability of the development

environment – the usability of both these parts impacts on the overall usability of

the language. A truly usable programming language should facilitate both

program development and program maintenance, balancing readability with

"writeability".

As is the case with all user interfaces, the only way to be sure of a programming

language's usability is to test it using real programmers, and in particular on the

types of programmers who will be expected to use the language in real life.

Spreadsheet macro languages should therefore be tested using spreadsheet users,

introductory programming languages will require a process of testing and

revision using real students without programming experience, a programming

language for mathematicians should be tested using mathematicians, and so on.

3.3.1.3 Human-centred

Just as a usable application must be designed around the needs of the user, a

usable programming language should be designed around the needs of the

programmer, rather than the needs of the machine. While there may need to be

trade-offs between making a language efficient and making it human-centred, the

needs of the programmers should be considered at some level.

For example, in languages such as C and C++, array indices start at 0, rather than

1, as is more traditional in mathematics. This is a very efficient technique, as array

variables in C are pointers to the start of the array, and the index is actually an

offset into the array. For programmers, however, it can be difficult to remember

(and to take into account in all appropriate calculations) that a 10 element array

actually has indices 0…9, rather than 1…10.

3.3.1.4 Task/Domain-oriented

No programming language can be all things to all programmers and all domains.

Designers of domain-oriented programming languages are able to focus on the

3-6

particular constraints that apply in their own domain, and may be able to make

their languages smaller and more powerful as a result. For example, a

programming language designed purely for teaching introductory programming

to computer science students probably does not require built-in advanced statistics

functions, while a language designed for psychologists would be more useful if it

made such functions easily accessible.

Like software that is designed to be able to perform as many tasks as possible,

languages that are designed for a wide range of possible domains, rather than one

specific domain, tend to be over-featured, and hence harder to use (Norman,

1998). The more features a language possesses, the more syntax and semantics

must be mastered before the language can be used successfully. Larger languages

must, of necessity, possess a larger cognitive search-space, so that it can be harder

for a programmer to find the appropriate construct for each situation. Books,

tutorials and on-line help systems must all be larger and more complicated in

order to deal successfully with a larger and more complicated language.

3.3.1.5 Consistent

In the same way that applications must be consistent in numerous ways, a

programming language should also aim for several different types of consistency.

• Consistency with what programmers already know. This enables

programmers to capitalise on their existing knowledge about programming,

programming languages, and computers.

• Consistency within the language's own constructs. Constructs should

behave in a predictable fashion. Once a programmer has learned how to use

one language construct, other constructs should behave in the same manner

as far as possible. For example, if a language contains two string

manipulation functions (such as concatenation and copy) that both take a

source string and a destination string as parameters, the order of the strings

should be the same in both functions – eg:

copyString(source,destination)

catString(source,destination).

• Consistency with domain knowledge and terminology. Domain specific

languages should use terminology and concepts that are appropriate to their

domain.

3-7

• Consistency with other programming languages, where it does not conflict

with other forms of consistency, or other more significant aspects of

usability. Consistency with other programming languages is useful, but

does not take priority over consistency with what the target users or

programmers already know, or over consistency with domain knowledge

and terminology.

Unfortunately, consistency is not always easily defined. Precisely what the design

should be consistent with is open to argument. Ideally a language should be

consistent with the way its users think. Unfortunately, users' thought processes

are notoriously difficult to model (Mayer, 1992), and when there is a large and

varied user group, their ways of thinking and working are likely to vary

substantially.

For example, the designers of the Turing programming language (Holt et al, 1988)

sought consistency in syntax where there were similarities in underlying

semantics. The notation A(B) possesses several distinct meanings, including

"return the value found at index B of array A", "return the value of function A

called with parameter B", and "return the value found in collection A at position

B". This syntax was chosen deliberately (Holt et al, 1988) to highlight the

similarity between each construct - they each return a value from A that is

somehow related to B.

Unfortunately, this type of consistency can cause problems for student

programmers, who are unable to determine the nature of A and B from context,

and must instead refer back to the beginning of the program where A and B are

declared. In addition, this type of syntactic linking of constructs that, in fact, have

distinctly different semantics and uses, can lead to difficulty when a student tries

to determine the differences between the constructs.

3.3.1.6 Robust

Programming languages should both be robust in themselves, in terms of the

available compilation and development tools, and they should facilitate the

production of robust software. This means that the constructs of the language

should support reliable error detection. A robust programming language is also

tolerant of error - in other words, small slips on the part of the programmer, such

as inadvertently using the wrong operator, do not have disastrous consequences

for the program.

3-8

3.3.2 What programming languages usually are

3.3.2.1 Easy to process (compile/interpret)

Parsing a programming language and producing machine code from it can be a

complex and difficult process. A language that resembles machine code closely,

for example one whose commands map directly onto machine code commands, is

much easier to process, since it only requires direct translation. Higher level

languages tend to have more complex constructs that do not translate easily into

machine code. As a result, it is often more difficult to write compilers for these

languages. Complex compilers are also likely to be somewhat slower than simpler

compilers, and hence cause the development cycle (write, compile, test, modify,

compile, test, etc) to be slower.

Language designers have not only their end users to consider, but also those who

will be required to write and maintain compilers for the language. Often,

language designers are the first to write compilers for their languages. It is not

surprising, then, that languages are often designed to be easy to compile, or at

least easy to write compilers for.

3.3.2.2 Hard to use

Languages that are easy for a computer to process are not necessarily easy for

humans to read and write. The goals of ease of compilation, speed and efficiency

are not necessarily compatible with ease of use. As with much of today's

software, difficult language constructs are often propagated for historical reasons

rather than out of current necessity. Sometimes these constructs are deliberately

included in order to maintain compatibility with an existing language, sometimes

they are a product of the language designers' familiarity and expertise with

existing languages, to the point where once-confusing constructs seem familiar

and logical. For example, experienced C programmers are familiar and

comfortable with the idea that array indices start at 0, rather than 1. In

consequence, the idea of arrays starting at zero propagated into Java2.

2 There are also other reasons for starting indices at zero, for example, some algorithms, such as

hashing, are easier to code with indices which start at zero.

3-9

3.3.2.3 Hardware-centred

For a language to be maximally efficient, hardware-centred design is a necessary

evil. Language constructs that are hardware-centred are designed to take

maximum advantage of hardware features. For example, the separation of

numbers into floating point and integer types is effective because it takes

advantage of the fact that computer chips typically have floating point and integer

mathematics implemented separately, and integer maths is often faster. It is more

efficient to separate out the integer maths that can be done fast and efficiently,

rather than doing all numerical calculations together, and thus losing time on

integer calculations.

3.3.2.4 Paradigm oriented

A programming paradigm is a style of programming. The paradigm has a

substantial impact on the form of a language that is designed to adhere to it. The

paradigm of a language affects the type of constructs available (for example, in its

strictest form the functional paradigm does not have assignment statements), the

way constructs are used (for example, the object oriented paradigm treats

variables as objects that have their own defined behaviours), and the way the

entire program is constructed. Each different programming paradigm requires a

different way of looking at a problem: functional programming focuses on the

actions required to solve a problem; object oriented programming deals with the

entities involved in a problem; constraint programming focuses on the

requirements that define a problem; logic programming deals with what facts are

known about a problem.

In an attempt to achieve paradigmatic purity, programming language designers

sometimes make decisions that can lead to awkward features in a language. For

example, pure functional languages, such as Miranda (Turner, 1985), have no

input or output capabilities, because I/O has the side effect of altering the input

and output streams of the program, and pure functional languages have no side

effects.

3.3.3 Cognitive dimensions of programming languages

As described in Chapter 2 (section 2.5.1), cognitive dimensions provide an

important list of points to be aware of during the design of any notation. The full

3-10

list of cognitive dimensions is shown in Figure 3.1. The most relevant cognitive

dimensions to introductory programming languages are discussed below.

"Closeness of mapping" deals with the domain for which the notation is to be used

– how well does the notation represent the domain for which it is intended?

There are many forms of "consistency", and programming languages require

several of those forms in order to be maximally usable. Consistency requires that

similar semantics are expressed in similar syntactic forms. "Similar", however, is

somewhat subjective in this context. This issue will be discussed further in

chapters 5 and 7.

"Diffuseness", or "verbosity", is an example of a dimension that is neither good nor

bad, but dependent on the target domain. Different levels of verbosity are

appropriate for different applications, and in different situations. For example, a

command that must be typed frequently (and hence is easy to commit to memory,

by repetition), but is rarely read, would be more usefully concise and easy to type,

whereas a command that is rarely used (and hence easy to forget) could usefully

be made more verbose and expressive.

Some programming constructs and concepts, such as starting array indices at 0

rather than 1, seem to invite and encourage errors, making them almost inevitable.

This is an example of an error-prone construct.

"Hard mental operations" refers to cognitively challenging constructs. For

example, a programming language that requires all numbers to be represented in

hexadecimal format requires hard mental operations of the programmer who

wishes to write a calendar program, since all dates will need to be converted from

decimal to hexadecimal and back. Of course, the level of difficulty of this mental

operation is entirely dependent on the programmer's familiarity with

hexadecimal, and how much experience he or she has in converting between

decimal and hexadecimal numbers. This is another example of how the ideal

cognitive dimensions for an application will vary depending on the application

and its intended users.

"Role-expressiveness" refers to the degree to which information about the function

of a construct can be inferred from its structure or form. In other words, is it easy

to determine what a component of a notation actually does, just from the

component itself – does the word, or symbol, indicate its function, or role? In a

programming language, high role-expressiveness allows for greater readability,

3-11

Cognitive
Dimension

Description

Abstraction Gradient types and availability of abstraction mechanisms

Closeness of
mapping

closeness of representation to domain

Consistency similar semantics are expressed in similar syntactic forms

Diffuseness verbosity of language

Error-proneness notation invites mistakes

Hard mental
operations

high demand on cognitive resources

Hidden
dependencies

important links between entities are not visible

Premature
commitment

constraints on the order of doing things

Progressive
evaluation

work-to-date can be checked at any time

Provisionality degree of commitment to actions or marks

Role-expressiveness the purpose of a component is readily inferred

Secondary notation extra information in means other than formal syntax

Viscosity resistance to change

Visibility ability to view components easily

Figure 3.1 Full list of Cognitive Dimensions of Notations (taken from Green & Blackwell, 1998)

and simple constructs that are easy to remember and to use. For example, the Ada

keywords in and out, used for passing parameters to subroutines, are highly

role-expressive. An in parameter is used for passing a value in to a subroutine,

and an out parameter is used for passing a value out of a subroutine.

"Secondary notation" provides extra information using notation that is not a part

of the formal syntax. One example of secondary notation in programming

languages is the use of code indentation in addition to explicit block delimiters.

Another is the provision of comments3. Secondary notation can be an extremely

useful tool, and can be as simple as using white space to group lines of code into

3 Although comment markers (such as // in C++, or { } in Pascal) are part of the formal syntax,

comments themselves are not.

3-12

related chunks. In a text-based programming language, most secondary notation

is in the hands of the programmer rather than the language designer, although it

may be provided by the environment, in the form of syntax directed editing and

annotation capabilities.

3.4 Summary

Viewing programming languages as user interfaces allows usability principles and

analysis techniques to be applied both to the design of new programming

languages and the analysis of existing ones. Any analysis on usability terms,

however, must first be put in context - as discussed in Chapter 2, usability of an

application is logically discussed in terms of a specific use for a specific group of

users. Students learning programming have particular needs, which vary quite

dramatically from the needs of expert programmers. Chapter 4 discusses the

problems with learning to program, leading into Chapter 5, which analyses some

existing languages from a usability standpoint.

4-1

4 The trouble with learning to program

The learning and teaching of programming has engendered an extensive

literature. At the computer science end of the literature spectrum are discussions

of introductory programming courses, and their experiences with particular

languages (Allen et al, 1996), software (Kölling, 1999b), or teaching techniques

(Geitz, 1994). Such accounts of educational experience are undoubtedly useful as

records of techniques that have been tried, and the successes and failures

attendant upon each, but they do not, in general, provide fodder for comparison of

different techniques, due to the ethical problems of conducting comparative

experiments using live courses. At best, comparison takes the form of anecdotal

evidence of observed differences between the course described and previous

incarnations of the course.

At the psychological end of the spectrum there are empirical studies comparing

individual programming constructs (Soloway, Bonar, & Ehrlich, 1989; Sime,

Green, & Guest, 1973), analyses of student errors (Eisenstadt & Lewis, 1992; du

Boulay & Matthew, 1984), and discussions of some of the problems experienced by

novice programmers (du Boulay, 1989; Spohrer & Soloway, 1989).

There are many theories about what makes learning to program so difficult

(Bruckman & Edwards, 1999; McIver & Conway, 1996; Brilliant & Wiseman, 1996;

Brusilovsky et al, 1994; Murnane, 1993; Eisenstadt & Lewis,1992; du Boulay, 1989;

Bonar & Soloway 1985; Brooks, 1977). Although theories abound, and courses are

designed and redesigned in an attempt to circumvent the difficulties encountered,

there remains surprisingly little empirical evidence to support the theories. New

languages and tools (Kölling, 1999a; Meertens, 1981) are often designed based on

experiences with existing languages, but without reference to learning theory or

research into the psychology of programming.

Section 4.1 discusses the evidence that learning to program is difficult, and looks

at some of the issues that must be considered when designing an introductory

programming course. Section 4.2 deals with cognition and how people think,

learn, and solve problems. Section 4.3 examines the cognitive requirements of

learning computer programming, while section 4.4 looks at some of the ways

introductory programming is currently taught at the tertiary level. Section 4.5

discusses the information still missing from the language debate.

4-2

4.1 Is there trouble?

4.1.1 Evidence

Du Boulay (1989) describes five main areas of difficulty with learning to program.

The first, he terms orientation – what is programming, and what is it good for?

Students sometimes have difficulty coming to grips with the various forms of

programming, from using spreadsheets and word processing macro languages

through to more formal programming languages such as Java. As programming

becomes a widespread, common feature of popular software packages, the

boundaries of "end user" computing and programming are blurring.

The second area of difficulty is the notional machine – how does the computer

work? What form does the virtual machine take? Hence what sort of commands

can it be expected to understand? How should those commands be issued? The

mental models that students construct are crucial to their understanding of each

new concept to which they are introduced. In addition, having a poor mental

model can lead students to develop poor learning strategies and become

unmotivated and discouraged (Kessler & Anderson, 1986).

The third category of difficulty du Boulay (1989) describes is trouble with the

notation – problems arising from the programming language itself, including the

syntax and semantics of the language. These include constructs that are error-

prone (see section 3.3.3), that lack role-expressiveness, or that involve hard mental

operations.

The fourth describes an essential element of the transition from novice to expert –

the acquisition of structures, cliches, or chunks that can be slotted into a solution.

Example of structures are: the computation of a sum using a loop; simple

searching algorithms, and swap functions. Experts have a library of such

structures at their disposal, developed through practice. Novices lack such a

resource, and it hampers their efforts to solve problems.

The fifth area of difficulty is often neglected in programming courses, despite its

profound impact. Du Boulay terms this area pragmatics – the auxiliary skills

necessary to programming, from dealing with the operating system interface of

the computer to editing, compiling and debugging a program. Students

sometimes have difficulty coming to terms with the mechanics of the development

environment, before they even start to deal with the programming language itself.

4-3

The levels of interface discussed in section 3.2 must all be dealt with in order to

program successfully.

 Du Boulay (1989) also notes that students are sometimes unaware of the

appropriate response to an error, so they may overreact to a minor syntax error,

for example, by throwing away an entire program, or by rebooting the machine.

Perkins et al (1989) studied the strategies of students learning to program. Like

du Boulay, they found that negative experiences cause some students to give up.

They describe such students as "stoppers" – stoppers stop trying when they

encounter a problem. Significantly, Perkins et al (1989) found that this tendency

could be countered by giving students a small positive experience to encourage

them. This suggests that early experiences in programming are important when

students are formulating their programming technique – positive experiences and

successes achieved while learning could lead to better programming habits and

more appropriate problem solving techniques.

The other class of students found was the "movers". Movers tend to keep trying

different strategies for making a program work, although not always wisely

(movers sometimes randomly change a program without understanding where

the problem is).

Putnam (1986) studied high school students learning to program in BASIC. He

found that that preprogramming knowledge incorrectly transferred to

programming causes many errors. Students tend to make up for their incomplete

knowledge of BASIC by assuming that the machine has natural language

capabilities, incorrectly making inferences about the use of keywords based on

their English meanings.

This study, together with Bruckman and Edwards (1999), suggests that these

natural language errors are likely to occur regardless of how close the

programming language is to a natural language. Bruckman and Edwards found

that natural language errors when using a natural language style programming

language made up a small proportion of total errors (10.6%), and of those, 61.8%

were corrected by students without outside assistance. They conclude that natural

language errors are not sufficient reason to avoid taking advantage of natural

language knowledge in programming language design. Indeed, it may be that

making the language more natural, rather than less, might help to minimise natural

language errors, by making students' assumptions more likely to be valid.

4-4

Putnam (1986) also notes that students sometimes use meaningful variable names

in the mistaken belief (or hope) that the computer will automatically make the

variable contain the appropriate value, for example, by calling a variable

smallest they assume it will contain the smallest value. Another point noted

about BASIC is the lack of directionality of the statement Let A = B. Does A

receive B's value, or vice versa?

The significance of mental models in learning programming has been highlighted

by the findings of Kessler and Anderson (1986), who undertook a study of

students' errors and understanding when learning recursion and iteration. They

found that students have poor mental models of the functionality of

programming, which in turn causes them to develop poor learning strategies

when learning to program. Van Someren (1990) concurs, looking at errors made

by beginners learning Prolog. A clear understanding of the underlying virtual

machine is critical for learning programming. For example, the A=1 B=A

problem1 arises from referring to variables as boxes, which does not accurately

reflect the mechanisms of the underlying machine. Van Someren (1990) also found

that unification and depth-first search in Prolog complicate the virtual machine

substantially, making the language more difficult for novices to grasp.

Van Someren's (1990) discussion of the importance of the virtual machine is

supported by the results of Dyck and Mayer (1985), who compared student

response time for comprehension of statements in BASIC with that for comparable

statements in English. Subjects tested for comprehension of BASIC statements

were required to know BASIC. Subjects tested for comprehension of English

statements were required to have no knowledge of BASIC. The study found a

high correlation between English and BASIC performance - response time for

comprehension of BASIC statements for students who knew BASIC was strongly

correlated with response time for comprehension of English statements by

students who did not know BASIC. Correlation was also found between

macrostructure (the total number of statements in the program), the

microstructure of each statement (the number of actions the statement performs),

and the response time for both English and BASIC statements. Students took

longer to comprehend more complex statements that performed multiple actions,

1 where students assume that A is now empty, because the value that was in A has been physically

transferred to B

4-5

regardless of whether they were in English or BASIC. This suggests that more

complex statements and implicit behaviours, where multiple actions take place as

a result of a single statement, are likely to be more confusing to students. This is

consistent with the findings of Van Someren (1990), described above.

4.1.2 Choice of language

The selection of a programming language for introductory programming courses

is often politically motivated (McIver and Conway, 1996). There is pressure to

teach industry relevant2 languages from day one. Many institutions that have

switched to teaching an industry relevant language such as C++, Ada, or Java as

their introductory language report that students respond well to the idea of

learning a language that they can use in industry directly (Allen, Grant, & Smith,

1996). Time spent on learning a language that will not be immediately and

obviously useful outside the classroom or laboratory can be resented and

perceived as wasted, even if fundamental concepts are being well conveyed using

that language (Conway, 1993a).

As a result of these perceptions, overall student motivation may well be lower in a

course using a special purpose teaching language than one using an industry

relevant language. It is possible, although it has not been tested, that those

students who prefer using an industry relevant language are distinct from those

students who have no computing or programming experience and who find

learning to program a difficult, stressful and intimidating process. The selection of

a language that maximizes motivation for students whose first concern is industry

relevance may not be compatible with the aim of maximizing motivation for those

students in the latter group, who may require a simpler, friendlier language and

environment in order to achieve the best learning outcomes.

The usability of the first programming language a student encounters can impact

on motivation and enthusiasm in many ways. If the language is misleading, in

that the intuitive interpretation of the syntax leads students to false conclusions,

they may learn to mistrust their own judgement and intuition, making the task of

learning to program more difficult and less enjoyable. If the language is difficult

to read and hard for students to interpret, that may also impact on motivation,

2 Languages that are commonly used in industry, as opposed to so-called "toy" languages used

only for teaching concepts.

4-6

leading those students who lack confidence to believe that they are not sufficiently

experienced or talented to be successful in learning to program.

4.1.3 Choice of tools

The choice of tools for teaching programming can be crucial to the success of an

introductory programming course. Important tools in the programming course

include compilers, development environments, text books, examples, hardware,

operating system, and demonstration tools used in lectures and laboratory classes.

Some of the questions to be considered when choosing tools include the following:

• Is the tool intended for novices?

• Is it industry relevant?

• Is it easy to use?

• Is it reliable?

• Is it functional over a network?

• Can students use it at home?

Du Boulay and Matthew (1984) discuss the problems inherent in compilers that

are built for one purpose but used for another. In particular, compilers are

frequently built to produce efficient executables for experienced programmers,

rather than for training novices. Such compilers are often guilty of a mismatch

between reported information and actual errors (such as "unexpected end of

program" being reported because a comment was not closed somewhere earlier in

the program.) These error messages direct the students' attention to the wrong

place, and the wrong kind of error. Du Boulay and Matthew (1984) describe a

prototype error checker for Pascal which they point out broke no new ground,

even in 1984. The technology required for sophisticated and accurate error

checking has existed for some time. Developing dedicated development

environments for teaching programming is expensive, however, and not nearly as

profitable as developing commercial tools. Many of the same arguments against

using real world languages to teach programming (namely that they are

unnecessarily powerful and complicated, and that they are designed for experts,

not for teaching novices) also apply to using real world tools, with similar

consequences.

The software used in programming courses typically suffers from the same

usability problems as any other software. Integrated Development Environments

4-7

(IDEs) in particular are designed for industry, not school, and have large numbers

of features, leading to high levels of complexity. Most compilers have a large

range of options that can be configured, which can make it difficult to find

important options when changes do need to be made. This high degree of

configurability often places a heavy burden on the programmer, for which

beginners are ill-prepared.

For instance, some environments require the size of the memory model to be

explicitly set by the programmer. In some systems, this can quickly become a

critical issue, particularly with ill-chosen default settings. A novice programmer,

who does not yet understand what a memory model is, will find it difficult to

determine the best memory model to use. In addition, problems caused by an

poorly chosen memory model may be difficult to identify and correct, since they

generally lead to unexpected behaviour (such as variables being overwritten),

rather than meaningful error messages.

Producing effective error messages is notoriously difficult (but far from impossible

– see Du Boulay and Matthew (1984)). Error messages suffer from the same

usability problems as software, in that they are designed by experts who are

thoroughly familiar with the subject area, but often targeted at novices with no

experience or understanding of the necessary topics. While an error such as "L-

value required on left hand side of assignment" may be helpful

and meaningful to a programmer who is familiar with the term "L-value", it is

not much use to a novice who has not yet encountered, or understood, the

concept. Similarly, the error message "<<function>>" may be meaningful to an

experienced Haskell programmer, but it does not convey much useful information

to a beginner3.

Many of the usability problems of the software in use in introductory

programming courses are compounded by the use of applications that are

designed for expert programmers. The political pressure to teach so called "real

world" languages is intense, and when teaching such a language, it makes sense to

use a popular commercial compiler, in order to equip students with as many

commercially marketable skills as possible. This leads to software (that may be

3 The return result "<<function>>" means that the return value is another function call that

cannot be evaluated

4-8

quite usable for expert programmers) being inflicted upon beginners who lack the

skills and knowledge to manipulate it effectively.

There is a vast gap between tools that best facilitate the expert programmer's daily

work, and those that are well suited to the particular challenges faced by students

learning to program for the first time. The fact that teachers must, of necessity, be

experts once again counts against them, this time because their favourite tools are

likely to be inappropriate for teaching purposes. In order to choose the right

language for teaching, the right development environment for the language, and

the best textbook for both language and underlying concepts, teachers must be

able to put themselves in the shoes of their students, remembering what it was like

to face all these tools for the first time.

As well as the tools that students use directly, the choice of teaching tools in the

lecture theatre is also important and equally challenging. Some tools, such as

HyperLecture (Conway, 1993b) support the display of animated versions of the

code. Such tools make changes to the value of a variable immediately visible, and

display data structures such as linked lists graphically. This is intended to foster

the development of an appropriate mental model of the structure. These tools,

while useful, require technical support in the lecture theatre, and can be difficult to

fit into a lecturer's personal teaching style.

As well as the hardware support for teaching in the lecture theatre, lecturers,

demonstrators, and tutors need to devise metaphors and analogies that help the

students to create the right cognitive models of their code and algorithms. Once

again it is necessary to start with something that all the students are familiar with,

so an example from everyday life is ideal, if it fits the topic in hand. Unfortunately

the wide cultural mix in many classes means that everyday life is substantially

different from student to student, and even a simple example such as making a

sandwich may not translate. In addition, the best of metaphors breaks down

eventually, so it is necessary to determine how far the example may safely be

taken, and to ensure that the breakdown of the metaphor does not cause an

associated breakdown of the fledgling cognitive models that students are

developing.

4-9

4.2 Cognition

4.2.1 Requirements for learning

The basic requirement for learning is often taken for granted: in order to learn

effectively, students need a safe environment that they can explore with

confidence. Some care is necessary to turn computers into such an environment,

especially if students have had disastrous experiences with them in the past, such

as losing hours of work through a system crash, or by pushing the wrong button

and being unable to recover from the error.

Once this basic need is met, there are more complex requirements for meaningful

learning to take place. Mayer (1989) describes meaningful learning as a process by

which new information is connected to existing knowledge – in other words,

learners learn best when they can tie incoming information to what they already

know. Existing knowledge is the "cognitive framework" to which we attach new,

but related, ideas. This process of linking is important. In its absence, students

"rote learn", which, in contrast to meaningful learning, occurs when students

memorize information, but fail to understand it.

Students can reproduce rote-learned knowledge, but they may not be able to use it

effectively. Rote learning also makes it substantially more difficult for students to

transfer their knowledge. Where meaningful learning has taken place, solutions to

known problems can more readily be adapted for new, but related, problems.

With rote learning, related problems are less likely to be identified as related, and

solutions cannot readily be adapted to new situations, because the solutions are

memorised rather than understood.

Norman (1993) points out that accretion - the accumulation of facts - is easy,

painless, and efficient when the proper conceptual framework is already in place.

That is, adding to existing knowledge is simple if the proper conceptual

framework already exists. New information that conflicts with what is already

known disrupts this process. Every item of new data that conflicts with existing

knowledge impedes accretion.

Norman (1993) describes reflective and experiential mode cognition. Experts

spend more time in "experiential mode" when problem solving, where action is

automatic and instinctive. Novices spend more time in "reflective mode", where

problem-solving is a prolonged and laborious effort. The process of "tuning"

allows the novice to assimilate new knowledge, and begin the transition from

4-10

reflective to experiential mode. The goal of learning can be characterized as

moving the learner from reflective to experiential cognition. New knowledge that

conflicts with existing knowledge anchors the novice in reflective mode,

hampering the tuning process.

Both Norman (1993) and Reason (1990) agree that experts work with larger chunks

of information than novices. For example, in programming, a novice may

concentrate on small details of syntax as part of the problem-solving strategy,

while an expert will match a problem with similar problems, and slot in, say, a

particular sorting algorithm. If the number and complexity of syntactic details a

student must remember can be minimised, thus minimising the cognitive

overhead, students may move more easily into experiential cognition.

Mental models have been shown to be crucial to learning and understanding –

students who have appropriate mental models are likely to do better on tests, and

show greater understanding than students with poor or inappropriate mental

models (Mayer, 1992). Mayer (1983) found that the provision of pictorial models

alongside explanatory text improved students' performance dramatically (by an

average of over 60 percent) over the explanatory text alone (although not for all

students, as top students showed better performance without the models).

4.2.2 Errors

Reason (1990) divides errors into two categories: "slips and lapses", and

"mistakes". Slips and lapses occur in situations where the correct action is known,

and the plan, or intention is correct, but an attentional check fails, causing a

mistake to be made. Attentional checks are required to keep plans on track, and to

ensure that the correct action is carried out. They fail when attention is distracted

- when a person is thinking about something else, or when an external distraction

occurs, such as the phone ringing. Slips and lapses occur during skill based

performance, which consists of routine actions carried out in a familiar

environment. Occasional checks are required to maintain correct behaviour

during skill based performance, and it is when these checks are disrupted that

slips occur.

Mistakes can be divided into two further categories: rule based errors and

knowledge based errors. Rule based errors occur during rule based performance,

where situations are pattern matched against the individual's experience, and

analogous situations are used to form appropriate solutions. Errors occur here

4-11

when a situation is incorrectly matched, due to a difference that has either not

been noted, or has been disregarded inappropriately. Knowledge based errors

occur during knowledge based performance, when the problem at hand is outside

the individual's experience, and a new solution must be designed from scratch.

Knowledge based errors arise from incomplete or inaccurate knowledge.

Bonar and Soloway (1989) studied errors made by beginners learning to program,

and proposed a model that explains novice behaviour. In particular, they

examined the link between "preprogramming knowledge", or what the students

knew before learning programming, and the kinds of misconceptions students

have. The proposed model suggests that natural language knowledge accounts

for many of the misconceptions students experience when learning to program.

For example, Bonar and Soloway found that some students incorrectly assume

that a while loop in Pascal terminates as soon as the condition becomes false4,

rather than when the condition is false at the beginning of the loop.

Bonar and Soloway also discuss "bug generators", which they describe as "patches

generated in response to an impasse reached by the novice while developing a program."

When a student encounters a problem she doesn't know how to solve, the

solutions attempted often cause more errors. These bug generators are often

natural-language related. In the absence of sufficient knowledge of the

programming language to solve the problem, students extrapolate from their

knowledge of natural language in an attempt to move beyond the impasse. This is

consistent with the behaviour of "movers" described by Perkins et al (1989) (see

section 4.1.1).

Eisenstadt and Lewis (1992) conducted an analysis of errors made by novice

programmers using SOLO5. The study proposes causes for each type of error,

although it does suggest that errors may have multiple causes. Eisenstadt and

Lewis compare their error analysis with Du Boulay's (1979) analysis of errors in

LOGO, and find the same primary culprits in the same relative ordering – spelling

errors, wrong number of arguments, no line number, and call to an undefined

4 Because the language implies it : while condition do stuff. It is natural to assume

that when condition becomes false, the loop is immediately terminated. The statement more

accurately translates as if condition is true now, do stuff, then go

back to the start and test again.

4-12

procedure. They suggest two approaches to solving these problems – trapping

errors in an intelligent fashion after they have been made, or pre-empting the

possible occurrence of errors using syntax-directed editing tools before the errors

have been made.

It should be noted that these solutions are predicated on the notion that the syntax

of the language is fixed and cannot be changed to eliminate some errors. Without

that constraint, an obvious third approach is to redesign the syntax to eliminate

common problems. For example, the third type of error, missing line numbers,

can clearly be dispensed with by eliminating the requirement for line numbers

(which LOGO has subsequently done), perhaps including them in the editing

environment instead.

Eisenstadt and Lewis suggest that eliminating unnecessary sources of confusion

"fosters more acceptance and participation by marginally motivated novices". They put

the case for a programming environment that uses "pre-emptive design" to create

an environment in which it is not possible to make syntax errors. The SOLO

interpreter already does some error-correcting inference. For example, typing

errors generate warnings such as "When you typed FIOD did you mean

FIDO?".

Spohrer and Soloway (1989) examined the popular belief that misunderstandings

of language constructs are the primary source of errors in novice programming.

They found that a few types of errors account for a high proportion of total errors,

but that misapplication or misunderstanding of language constructs were not

represented among the most common types of errors. Instead, they argue that the

majority of bugs are "plan composition problems", or difficulties putting the pieces of

the program together correctly. It is significant that Spohrer and Soloway

focussed exclusively on bugs in syntactically correct programs, so that syntactic

problems with language constructs were not considered. Bugs were categorized

as "definitely due to a construct misunderstanding", "maybe", and "definitely not".

Over the three exercises studied, 9% of errors were definitely caused by construct

misunderstandings, 40% were categorized as ”maybe", and 52% as "definitely

not". Spohrer, Soloway, & Pope (1985) also examine novice programming errors.

However, they focus on "planning errors", no syntax errors are considered.

5 SOLO is a programming language developed at Open University in the UK for teaching

programming to psychology students

4-13

4.2.3 Problem solving

Although problem solving is difficult, it is something at which we get considerable

practice in our day to day life. "How will I get to work now that the car is broken

down?" "How much food can I buy before I need to go to the bank?" "Where shall

I hide this body?"

Instructing or teaching is more difficult. To begin with, instructing someone (or

something) on how to solve a problem requires not that the problem be solved,

but that a solution be described (Dalbey & Linn, 1985). While we may be adept at

problem solving, delineating a solution is considerably more difficult. Human

problem solving is full of assumptions and intuitive leaps – we often do not

actually know how we solved a problem. Even simple problems can be

challenging to describe in precise detail – for example it is not often necessary to

describe how to find the largest of ten numbers, rather than simple finding it

directly.

In order to give instructions on how to solve a problem, some common ground

must first be found between instructor and pupil. Background knowledge is an

important factor in the assimilation of new information (Mayer, 1989). As a result,

effective instruction and communication require some awareness of the existing

knowledge that may be assumed. For example, when describing the best way to

reach a particular destination, it helps to know whether the listener knows the

area and can recognise important landmarks. It is not helpful to suggest a left turn

at the Civic Centre if the listener does not recognise the Civic Centre as a

landmark.

Instructing, or programming, machines is made particularly difficult by the

necessity for a high and unfamiliar level of precision. When instructing humans,

assumptions can be made, and steps can be skipped and interpolated. While this

can lead to errors in person to person communication, it also makes

communication robust in the presence of errors. For example, when giving

directions it is not uncommon for a person to leave out a step without realizing it,

and a person who has taken a wrong turn is probably capable of detecting the

error eventually, and correcting for it, given sufficient time. It is not necessary for

the person giving directions to provide directions for every possible circumstance.

A computer given incorrect instructions, however, cannot usually correct for them

and calculate the correct response.

4-14

In every day life we make assumptions without being aware of them. We assume

shared knowledge and skills. We assume interpretive abilities. We assume certain

basic physical abilities and skills, unless it is clearly inappropriate. For example,

when giving directions, we assume that the recipients of the directions can see

where they are going, unless we know that one of the recipients is vision

impaired.

When instructing computers rather than humans, the range of valid assumptions

is dramatically different. Because we are unaware of many of the assumptions we

make, recognising them and eradicating them from our instructions is particularly

difficult. In order to give instructions effectively, a common base of shared

knowledge must be established. To apply this to programming, a programmer

must know exactly what the machine "knows". In other words, a detailed

knowledge of the instructions a computer can interpret is necessary. The

programmer must remember not only what instructions are valid, but how to use

and combine those instructions effectively. This becomes the base of shared

knowledge upon which the instructions are built.

4.3 Programming-Specific problems

4.3.1 Cognitive demands of programming

Learning to program requires students to hold a wide range of information in

working memory. In addition to the details of syntax and semantics specific to the

programming language being used, students must determine how to solve each

problem, and be able to differentiate between solving the problem and specifying the

solution.

Pennington (1987) characterises the types of programming knowledge used by

experts in order to comprehend programs written by others:

• data flow – what happens to the data between input and output?

• operations – low level individual actions, eg "set x to 0"

• control flow – sequence of execution

• state – state of the system at various points – effectively the impact of

operations, and

• function – what does the program actually do? what do bits of the program

do?

4-15

Novices must acquire all of these different types of programming knowledge, at

the same time as they accumulate syntactic and semantic knowledge about the

programming language, and general knowledge about how computers work. As

early as 1977 it was well established that errors made while programming are

clearly related to particular features, constructs, or properties of programming

languages (Brooks, 1977).

Murnane (1993) discusses programming from the natural language standpoint,

looking at Piagetian and Chomskyan theories of natural language acquisition, and

how they apply to programming. He suggests that, initially, students require

solid, tangible objects to work with. They need good feedback, and a clear path

from cause to effect - "when I do x, it causes y". This is consistent with Van

Someren's (1990) finding that a good understanding of the underlying virtual

machine is vital for students learning programming.

4.3.1.1 Fear of the unknown

As Dijkstra (1985) has pointed out, computers are difficult to learn to use because

they are very different from anything we encounter in the normal course of our

lives. Although this is gradually changing as computers proliferate in everyday

household devices, operating a personal computer is still substantially more

complex and difficult than operating a microwave, for example (even though

operating a microwave is itself often surprisingly difficult and frustrating). New

users are often acutely aware of this complexity, if only second-hand, and using

the computer can be intimidating and frightening, particularly for a user who has

trouble operating the video recorder.

Learning to program a computer is significantly more difficult, complex and

intimidating than simply using one. A user who has trouble making a word

processor produce the desired output may be justifiably afraid of programming,

with its concomitant reputation for arcane and mystifying symbols and extreme

complexity. Not only is programming a new and unknown feat (intimidating

enough in itself), it also has a reputation for being exceptionally difficult. This can

lead to nervous, timid students who are already half convinced that programming

is beyond them. Subsequent errors and stumbling blocks, of which there are many

whenever something new is being learnt, compound and exacerbate these feelings

of helplessness and inadequacy.

4-16

4.3.1.2 Precision

Human beings are not precise and accurate by nature. They make assumptions,

skip steps in instruction books, and filter their world for meanings that make sense

to them. Norman (1998) uses the following example: "If an airplane crashes on the

border between the United States and Canada, killing half the passengers, in

which country should the survivors be buried?" It is not uncommon for this

question to be considered seriously, on the assumption that it makes sense and is a

meaningful question. Many people fail to notice the problem with the question:

the survivors should not be buried at all.

While this implicit error-correction means it is easy to fool a person into

considering a nonsensical question as though it were serious, it also means that

communication can be extremely robust. People often make small slips in

conversation that go entirely unnoticed. Errors in written or spoken language are

often unimportant, as the reader or listener uses context to interpret the meaning

correctly, often without being aware of it. For this reason, proof reading of a work

by its author is likely to be ineffective, particularly immediately after it was

written, as the author will tend to read what he or she intended to write, rather

than what is actually on the page (Norman, 1993).

A further aspect of precision is the need in programming to consider all

eventualities, and take every possible alternative into account. In communicating

with each other, it is usually not necessary to do this – it is common to take some

things for granted (Philipchalk & McConnell, 1994). For example, in instructing

someone to pick up a book from a table, it is reasonable to assume that if there is

no book on that table, the attempt to pick up the book will cease. In programming

instructions for a robotic arm, however, it would be necessary to include some sort

of backup response that catered for the absence of the book.

In a programming context, when reading in numbers some languages will fail if

text is encountered rather than digits, some will silently convert text to digits, and

some will behave in an undefined fashion. If, on the other hand, a person were

asked to add two numbers, "3" and "dog", it could reasonably be assumed that a

problem would be detected. In most cases the problem would probably be solved

using a request for clarification. It would not be necessary, in giving a person

instructions on how to add the two numbers, to specify a separate procedure for

handling unexpected input.

4-17

Not only are human beings unaccustomed to the need to state explicit responses to

every possible input or eventuality, we are also accustomed to assuming that some

eventualities are not possible, when they are merely highly improbable. As such,

we do not even assume that these situations will be handled appropriately should

they arise, we do not consider them at all. When leaving instructions for the care

of house plants during an extended absence, it is uncommon to leave precise

instructions for the eventuality of a meteor strike. If we were to attempt to plan

for every remote possibility, we would be unable to deal with everyday life. We

naturally filter the world to deal with situations that are likely and imminent, in

order to survive (Norman, 1993; Philipchalk & McConnell, 1994). Nonetheless it is

likely that, if a meteor does strike, the caretaker will make some appropriate

response (such as buying replacement plants).

As a result, the level of precision required in programming, where every

eventuality must be catered for, is likely to be challenging for the novice

programmer. Operating at this level can be extremely taxing for those who are not

accustomed to it. A high level of precision and specification must be maintained

at all times, requiring a level of attention to detail that does not come naturally to

human beings. At the same time, the programmer must deal with the limitations

of language, machine, and compiler, all of which frequently require the inclusion

of details that are not directly related to the problem, such as function prototypes

when a function is to be used before it is declared, inclusion of libraries, memory

management routines, etc.

4.3.2 Expert programmers

Mayer (1992) describes four main areas of expert-novice differences in computer

programming – syntactic, semantic, schematic, and strategic knowledge. Novices

struggle with syntactic knowledge because they have trouble recognising incorrect

grammar, while experts are be quick to recognise grammatical mistakes. Experts

have effective mental models of the virtual machine, while novices have yet to

build these models – this is the difference in semantic knowledge. Schematic

knowledge describes the structure of a program – experts use deep structure to

categorize programs based on the type of routines required, while novices use

surface characteristics for categorization. The planning process during problem

solving uses strategic knowledge. Novices tend to use low-level plans, and are

unskilled at problem decomposition. In contrast, experts keep the overall problem

in mind while decomposing problems into small, manageable sub-problems.

4-18

Experts also consider many more alternatives than novices, and are more capable

of comparing different solutions and considering the merits of each. Novices

frequently do not consider alternative solutions at all (Jeffries et al, 1981).

A person who is experienced at problem solving in a particular domain tends to

build up a repertoire of problem solving techniques and strategies (Mayer, 1992).

When confronted with a new problem, such an expert compares it with past

problems and, where possible, constructs a solution out of familiar, reliable

techniques. Wiedenbeck (1985) argues that experts have automated low-level

programming skills, thus freeing cognitive resources that can be used to tackle the

higher level aspects of a problem. Experts can thus recognise grammatically

incorrect code with a minimum of conscious effort. Novices, in comparison,

require considerable conscious effort and cognitive resources to determine

whether a piece of code is grammatically correct, before they can begin to try to

determine what the code actually does.

For example, an experienced doctor who encounters a familiar set of symptoms

for the tenth time is likely to diagnose the problem quickly and easily. While this

can lead to problems such as tunnel vision, (where the familiar, expected solution,

turns out to be incorrect in occasional cases (Norman, 1993)), in general it is likely

to make the task of problem solving quicker, easier, more efficient, and more

accurate.

A novice with no experience at problem solving in a particular domain, or in a

related domain, must deal with problems individually, effectively solving them all

from the ground up. Rather than adapting a new solution from existing

algorithms, the novice, having no bank of algorithms to draw upon, must

construct each necessary algorithm from scratch. A problem requiring a simple

sorting routine necessitates the laborious construction of a sorting function from

first principles, where an expert would simply slot in, say, an existing quicksort

function with minor modifications to suit the current problem. Even when experts

do not have access to files of code, they retain mental libraries of algorithms that

can be reproduced at need. Novices have yet to build these libraries.

 Details of the language that need to be remembered include: Which types of lists

are sorted? What is the default step size in a for loop? What types of values may

be returned from a function? How are parameters passed to a function? (by

reference, by value, both depending on syntax) What is the difference between an

array and a list? How does pattern matching work? What is a wild card? What

4-19

data structure is most appropriate for the current problem, and how is that

structure accessed? Is there a built-in operator suitable for use with this problem?

In addition to remembering details of syntax and semantics, the novice must also

endeavour to keep track of the current problem and solution. Any non-trivial task

(and most tasks are non-trivial to beginners) requires the programmer to keep

track of details such as the maximum size of the data to be manipulated, the

precise manipulations required, and the necessary algorithms. This is a

manageable task for an expert, as much of the information required is familiar to

an experienced programmer and may be "chunked" effectively into one unit that

can easily be recalled. But the information is new and unfamiliar to a beginner,

and is remembered in separate pieces that fill up working memory and leave little

space for algorithms and problem solving.

4.4 Existing solutions

4.4.1 Subsetting

Three of the most common approaches to teaching programming involve

somehow shrinking the language to a manageable size. Brusilovsky et al (1994)

call these approaches the incremental approach (teaching small subsets of the

language and gradually expanding them), the sub-language approach (teaching

only a subset of a real language), and the mini-language approach (creating a

small, clean, new language exclusively for teaching). The incremental and the

sub-language approaches stem from the same basic theory, and teach a small part

of the language first, so that students don't have to deal with too much straight

away. These two approaches are discussed in this section, while the third is

covered in section 4.4.4.

Subsetting can be challenging to integrate properly with support materials. Text

books are unlikely to be confined to the same subset of the language unless they

are purpose-written for the course, which can be prohibitively expensive.

Compilers are also unlikely to correspond purely to the relevant subset. Features

of the development environment and error messages issued by the compiler may

therefore refer to parts of the language that have been deliberately concealed from

students.

4-20

4.4.2 Language overlays

Another approach to teaching programming is to put together a supporting

library of "novice-friendly" functions and data structures - an overlay that is less

intimidating and more intuitive than the language hidden underneath. This is

particularly feasible in an object-oriented language, where the overlay may be

used without reference to the underlying language.

However, this approach suffers from many of the problems of subsetting, in that

compilers, teaching materials, and text books often don't confine themselves to the

sections of the language being taught. In the case of language overlays, text books

may not contain the new functions and data structures at all, referring instead to

the underlying language which, again, has been deliberately concealed from

students.

4.4.3 Supporting environments

Unfriendly, difficult programming languages can be mitigated by using a

supporting environment designed to minimise the impact of obscure syntax and

complex semantics on students. One such environment, BlueJ (Kölling and

Rosenberg, 1996 a&b)) was first developed as a language and programming

environment, but was later modified to be a development environment for Java.

BlueJ provides a visual environment where objects may be created using menus,

and skeleton code is produced that novices may then edit, for constructors and

object behaviour. Students can define methods and attributes of objects without

needing to focus on complexities of the syntax. The major advantage is that

students can focus on object-orientation, working with objects and dealing with a

visual representation of their program that enables them to see how objects

interact and interrelate.

Empirical analysis of the environment remains to be done, to compare its

performance with typical Java programming environments, and to answer

questions such as how well students learn the syntax of a language when

presented with code skeletons or templates, and how well they subsequently

transition to using the language without the environment.

Miller et al (1994) describe a collection of different structure editors developed and

used at Carnegie Mellon University. These editors, and others like them, are

designed to avoid problems of syntax by detecting syntax errors while the code is

being written, rather than waiting until compile time. Some structure editors

4-21

allow only correct code to be written, which can cause problems where partial

code (for example, a function without a fully specified parameter list) is written

and then edited later. Others provide code templates which may be inserted,

which prevents students from making most syntax errors, since the templates

need only be filled in, and semi-colons and other details of syntax are

automatically provided.

These approaches successfully avoid many syntax errors, and reduce some of the

cognitive demands on students. However, as students still need to be able to read,

understand, and modify the code, not all of the cognitive overhead imposed by

syntax can be avoided in this fashion.

4.4.4 New languages

Many languages have been designed explicitly for teaching programming,

including Pascal (Wirth & Jensen, 1975), ABC (Meertens, 1981), Turing (Holt &

Hume, 1984), and Blue (Kölling & Rosenberg, 1996a). Despite their pedagogical

purpose, these languages were generally not designed based on psychological and

learning theory. In fact, the principles of good user interface design, and what is

known about how people learn in general, have rarely been applied to

programming language design (although there is some movement in that

direction, for example Pane & Myers (2000), and Myers (2000)).

Nonetheless, languages such as those listed above have made significant

pedagogical improvements on commercial languages. Such languages are

discussed in more detail in the next chapter.

There are also a number of mini-languages used for teaching introductory

programming, often to children. Brusilovsky et al (1997) describe "mini-

languages" as "small, simple languages to support the first steps in learning

programming", and reports that many existing mini-languages use an actor to

engage the enthusiasm and interest of students - for example, the LOGO turtle,

and Karel the robot . Such languages are usually trimmed-down, simplified

versions of existing languages (Lisp for LOGO, Pascal for Karel), often, like Karel,

intended to serve as an introduction to the parent language. Much of the

development work involved in these mini-languages has been invested in the

actor and its environment. What can the robot/turtle do? What objects can be

manipulated, what actions are available, and what control structures should be

retained from the parent language? A crucial benefit of mini-languages such as

4-22

these is the visual feedback students receive as the actor visibly carries out their

instructions.

These important considerations have usually taken priority over matters of syntax

and semantics, in a successful bid to maximise student motivation. It is difficult to

study the effects of actors, syntax, and semantics all at once. In order to focus on

issues of syntax and semantics, this thesis leaves aside the study of such actors.

Future work resulting from the GRAIL project could combine the resulting

awareness of syntactic and semantic issues with the clear positive effects of mini-

languages using actors, in order to achieve an optimal learning environment.

4.4.5 Acceptance

One approach to the difficulties of learning to program is to accept them. Students

who wish to learn programming must eventually come to grips with real world

programming languages, and some educators take Van Someren's (1990) view that

syntax is only a problem in the early stages of learning a language. Given that

students will need to deal with real world languages sooner or later, it could be

assumed that sooner is better, so as to give students maximum exposure to

languages they are likely to use in industry after they graduate.

This same argument, though, when applied to the exercises students are given

initially, is clearly flawed: "Given that students will need to write large programs

sooner or later, sooner is better, so that they get as much experience as possible in

programming in the large." Few educators would expect students to write a large

program from scratch as their first programming exercise. In addition, not all

concepts students must master in order to become competent programmers are

taught at the very start of the first programming course, or even in that first course

at all.

4.5 Missing links

Despite enthusiastic, and occasionally heated, debate about the best language to

use for introductory programming courses, there are still gaps in the empirical

evidence gathered to support the various arguments. In part this is due to the

ethics of experimentation using real students – if a cohort were divided into

groups and each group was taught a different language, students could quite

justifiably claim unfair advantage depending on which group achieved better

results. Even if the process were not ethically questionable, developing two

4-23

courses instead of one (or at least altering the materials of a course to handle two

separate languages) is prohibitively expensive, particularly if the impact of

development environment is to be minimised by providing the same environment

for each language.

The following questions remain to be answered:

• Does the programming language influence the types of interaction and

hence the learning process? Do students make different types of errors, or

alter their problem solving strategies depending on the language they are

learning?

• Does the development environment influence the types of interaction and

hence the learning process? Does student behaviour change according to

the type of development environment in use? What sort of impact does an

interactive environment have, where each line of code receives immediate

feedback? Do the error messages have a significant impact on the students'

motivation, understanding, and overall learning process?

• Does syntax impact on cognition in a significant way? Does the syntax of

a programming language have a significant effect on the cognition and

learning of novice programmers? Does the Piagetian view that language

shapes thought apply to programming languages? How does students' first

programming language shape their mental model of the virtual machine?

• Does usability of programming language, environment, and support

materials affect learning? Does it matter what tools are used in teaching

programming? Does the usability of the tools impact on student learning,

and, if so, is it necessary to create tools that are specifically designed for

teaching programming, rather than using commercial tools for purposes for

which they were not designed.

• Do programming skills transfer well to new languages? Is there a valid

argument for teaching a "toy" language first rather than an industry relevant

one? Does it work to teach concepts first in a simple language - do they

transfer to an industry relevant language?

• Does language choice really matter? Is the impact of a student's first

programming language truly significant?

Chapters 6 through 10 of this thesis address these open questions.

5-1

5 Usability of Programming Languages

There are thousands of programming languages in existence today (Language,

2000). New languages are constantly being designed and implemented for a

variety of purposes. Some, such as Java1, are developed for commercial reasons,

while others, such as SOLO2, are aimed at academic environments. Few languages

are designed with strict attention to usability principles. The decisions made in

schools, universities, and industry to use particular languages are also rarely made

with usability in mind.

However, the cognitive dimensions of notations, and other usability principles

discussed in Chapter 2 can be used to analyse existing programming languages,

and subsequently to support the design of new programming languages which

provide greater support for specific activities, such as learning to program.

Most of the languages discussed here are commonly used as introductory

programming languages. While some languages, such as ALGOL and FORTRAN,

are no longer as popular for introductory teaching as they once were, it is

appropriate to include them for historical perspective. Such languages give some

insight into the background of today's language designers, and provide the basis

for some of the pervasive features and techniques used in programming today.

Other languages have been included as being representative of a particular style

or paradigm of language. For example, Hypertalk is included although according

to the Reid report (1999)3 it is only taught in one school as an introductory

language. Languages such as Turing, Logo, and ABC are significant in having

been designed for pedagogical purposes.

The focus of the following discussions is solely on the use of the languages as

introductory or pedagogical programming languages. As discussed in Chapter 2,

usability is only meaningful when discussed in terms of a certain user group. An

1 Java was designed at Sun Microsystems to be a platform-independent language (Arnold &

Gosling, 1998)
2 SOLO was designed at Open University for teaching computer programming to psychology

students (Eisenstadt & Lewis, 1992)
3 The Reid Report (1999) is a somewhat inaccurate measure of a language's popularity for

introductory programming courses, since the survey relies on schools to volunteer the

information. Reid does not actively query any institutions, and is no longer maintained.

Nonetheless, it is the only available survey of language choice in tertiary teaching institutions.

5-2

application or programming language which is highly usable for an expert may

not be usable for a novice, and vice versa. This thesis focuses on the needs of

novice programmers with no prior programming experience, particularly those

students whose negative experiences with computers and technology have led to a

fear of computers, and consequent learning difficulties.

5.1 Analysis of programming languages

5.1.1 Criteria

Comparison and analysis of programming languages is easiest to do when based

around a set of measurable attributes. For an analysis based on usability, the

cognitive dimensions of notations provide a useful set of attributes by which

programming languages can be described and compared. For the purposes of this

thesis, the set of cognitive dimensions will be reduced to those most applicable

and important to introductory programming (see Table 5.1). Although other

dimensions are certainly relevant, and may be mentioned for individual

languages, those chosen to provide the basis of this discussion are the most

critical, for reasons discussed below, and will be considered for all languages

included here.

One dimension which is not covered here is visibility. Visibility refers to the

amount of cognitive effort required to make information visible. It is particularly

important to expert programmers who need to see large amounts of code

simultaneously in order to understand and manage large programs. In this sense

it is less relevant to novices writing small programs. Visibility also tends to be

consistent from one text-based language to another. It is much more relevant to

visual programming languages, or programming languages with a visual element,

such as mini-languages with actors (see section 4.4.4). Visibility can be enhanced

by the use of supportive environments which allow different views of the code

(one such example is described in Miller et al (1994)).

5.1.1.1 Closeness of Mapping

"Closeness of mapping" is particularly important for introductory programming.

When students solve a problem, how closely does the programming language fit

the language and concepts of the students' solution? How many steps does the

notation require in order to complete one conceptual step in a student's algorithm?

How well does the language fit the way students think? Closeness of mapping

5-3

refers to the closeness of the language to knowledge students already possess, to

the types of problems students are required to solve, and to the concepts students

are attempting to acquire.

Closeness of mapping closeness of representation to domain

Consistency similar semantics are expressed in similar syntactic

forms

Diffuseness verbosity of language

Error-proneness notation invites mistakes

Hard mental operations high demand on cognitive resources

Role-expressiveness the purpose of a component is readily inferred

Table 5.1 Cognitive Dimensions of Notations most relevant to introductory programming

5.1.1.2 Consistency

Consistency requires that similar concepts are expressed in similar ways – that

related constructs work in recognisably analogous ways, in order to maximise the

predictability of the language. Students who have mastered one construct can

then rely on similar constructs working in similar ways. At the same time,

though, consistency can be taken too far. Careful differentiation between

semantically distinct constructs is also necessary. There is a balance to be struck

between underlining semantic distinctions and emphasising similarities.

5.1.1.3 Diffuseness

As discussed in Chapter 3, the appropriate level of diffuseness, or verbosity, is

dependent on the target domain. In introductory programming, a careful balance

must be struck between verbosity used to enhance the readability and clarity of

the language, and brevity used to increase the visual structure of the language.

Very verbose languages, such as Hypertalk (Shafer, 1991), often possess a less

obvious visual structure and rely more on careful reading of the code to elicit the

start and finish of code blocks and functions.

5-4

5.1.1.4 Error-Proneness

Error-proneness is a common problem in programming languages. Many

languages possess constructs which make errors almost inevitable. One example

is the use of similar symbols in semantically distinct situations, where there is no

obvious way to remember which symbol is appropriate in which situation, for

example = for assignment and == for equality testing. Another is the use of

familiar symbols in unfamiliar ways, for example the way Java uses = to test for

equality of reference rather than equality of value.

5.1.1.5 Hard mental operations

Hard mental operations are unavoidable when learning to program. As discussed

in the previous chapter, there are many concepts in programming which are

difficult for students to master, and which require them to think in unfamiliar and

complex ways. However, a notation which avoids requiring students to perform

unnecessarily challenging cognitive operations may be able to minimise these

hard mental operations, and hence make coming to grips with programming

easier and less stressful.

5.1.1.6 Role-expressiveness

Role-expressiveness is particularly important to first-time users of a notation,

because it allows them to interpret the notation without reference to other

resources such as teachers, and manuals. It decreases the learning curve, and

increases the accessibility of a notation. At the same time, role-expressiveness is

helpful to experts, because it facilitates memorisation of components of the

notation – acting as a reminder of the function of each component. Clearly, role-

expressiveness is vital to introductory programming, allowing students to read

programs and form some impression of what they do, rather than needing every

component explained to them. For example, the code

cout << "hello world";

is less role-expressive than

print "hello world"

due to the use of the keyword cout with which students are unlikely to be

familiar, compared with print, whose English meaning is sufficiently analogous

to its programming meaning that the statement may well be correctly interpreted

without prior programming knowledge.

5-5

5.2 The languages

5.2.1 Pascal

5.2.1.1 Background

Pascal (Wirth & Jensen, 1975) was a popular choice of introductory programming

language for many years. It is an Algol-like language first designed in 1968, first

implemented in 1970. By the mid-seventies it was in use as an introductory

programming language, and it continued to gain in popularity throughout the

Seventies and Eighties. Its popularity as an introductory language is a compelling

reason to study it here, but it is perhaps equally significant for its impact on

subsequent languages such as the Modula family (Wirth, 1988), and, perhaps less

obviously, object-oriented languages such as Ada (US Department of Defence,

1981), Smalltalk (Goldberg & Robson, 1983), and Java (Arnold & Gosling, 1998).

Many generations of computer programmers learned Pascal as their first

structured programming language, if not their first language4, with the result that

the language has had both tangible and intangible influence on language design.

5.2.1.2 Usability

Pascal maps closely onto the virtual machine, so that students with a good mental

model of the machine's architecture and functionality should be well positioned to

program in Pascal. However, it does not map as closely onto the way students

solve problems and think about the world. Details such as the separation of

numbers into floating point numbers and integers are likely to be unfamiliar to

novice programmers.

Another feature which is particularly restrictive and frustrating involves the

parameter passing mechanism as it relates to arrays (and hence to strings – arrays

of characters). The type of an array includes its size, and the precise type of a

parameter must be specified in the declaration of a procedure or function

(subroutine). As a consequence, an array may only be passed as a parameter to a

subroutine if it precisely matches the dimensions specified in the subroutine

4 For many years BASIC was a common choice of first programming language for programmers

learning programming at home, rather than as part of a formal course

5-6

declaration5. This limitation makes the creation of a string processing routine

clumsy and inefficient. The only solution is to assume a standard size of string

which is large enough for any purpose, and then to declare all strings to be this

size, regardless of how much space they truly need.

Pascal scores well in consistency overall, although there are some minor syntactic

issues where, although the rule may technically be consistent, it is unlikely to

appear consistent to a beginner. One such issue is the requirement for a semi-

colon after some END statements, but not others. The final END statement in a

program requires a full stop, which is simple enough to remember in isolation, but

when combined with the need to remember which END statements throughout the

program require a semi-colon and which do not, the cognitive overhead increases.

Although many Pascal implementations ignore excess semi-colons, there are

places where an extra semi-colon can change the meaning of the code. For

example, the else in the following code is actually not considered part of the

nearest if , because the semi-colon used in the preceding line ends the if

statement.

if A < B then

A:=B; { this is the offending semi-colon}

else

B:=A

Depending on the preceding code, this would either produce an error, or attach

the else to a preceding if statement.

Pascal has low to moderate verbosity – it is not as terse as C, and not as verbose as

Hypertalk. The problems with consistency translate into some error-proneness,

which can also be a problem with memory management in Pascal, when using

pointers and dynamic memory allocation. Pascal does not contain many hard

mental operations, although keeping track of dynamic memory can be a problem.

5 conformant arrays (which allow arrays of different sizes to be passed as parameters, as long as

they "conform" to the same number of dimensions, and the same type of the array contents, as the

formal parameter) are actually part of "Standard Pascal" but are optional, and frequently not

implemented, perhaps because they are not necessarily easy or efficient to include

5-7

Pascal scores fairly well in role-expressiveness. Its control structures are, in

general, self-explanatory, from for statements (eg. for i := 1 to 10 do) to

procedures (eg. procedure p (x : integer)), however some of its syntax is

less role-expressive than it could be. For example, the role-expressiveness of :=

versus = is not clear. It is useful to differentiate assignment from equality testing,

but the use of := is somewhat arbitrary, and does not convey any useful

information, other than "this is not equals".

Many of the built-in functions in Pascal are well named and very role-expressive,

for example read and write for I/O, and abs for absolute value. However,

there are subtleties to some of these functions which can be unexpected – for

example, reading a real value into an integer variable will read everything up to

the decimal point. The next read statement will read the decimal point (if reading

in a character) or the digits after the decimal point will be read as a new value (if

reading in a numeric value).

5.2.2 ABC

5.2.2.1 Background

ABC (Geurts, Meertens, & Pemberton, 1990) is a language designed specifically for

introductory programming. It is tightly integrated with its environment, so that

any study of the usability of the language must also discuss that environment.

Although it was moderately popular for teaching programming when it first

appeared, it does not appear in the Reid Report (1999), and seems to have fallen

into disuse. ABC is a strongly typed procedural or imperative language,

somewhat similar to Pascal, although it has several significant differences from

traditional imperative languages, including a wider range of abstract data types,

persistent values (which persist permanently, even between executions of the

interpreter, until explicitly deleted), and a single, arbitrary precision numeric type.

5.2.2.2 Usability

ABC is very closely mapped onto the types of programs novice programmers are

likely to write, and onto the language students can be expected to use. Many

functions more typically carried out in traditional programming languages using

symbols are done in ABC using keywords, making for a very readable (but

consequently verbose) programming language. Consider the following ABC

assignment statement: PUT x IN y .

5-8

In addition, data structures in ABC map easily onto problems beginners

understand – for example, the table type in ABC is effectively an array indexable

by any type. Indices, known in ABC as keys, need not be consecutive, making the

construction of sparse arrays as easy as a traditional non-sparse array with

consecutive keys. This means that, for example, a telephone book can easily be

constructed, mapping names onto telephone numbers or vice versa.

ABC is consistent and, in general, not error-prone, although some constructs may

be confusing at times – for example, lists in ABC are automatically sorted, leading

to potential confusion for students who have forgotten, or never grasped, that this

is the case. Hard mental operations are not present in ABC, and role-

expressiveness is generally high. Some exceptions to this are the surprisingly terse

operators chosen for some functions – for example: # (length), ^ (concatenation),

^^(duplication and concatenation), / (used in a WRITE statement to print a

newline), and | (returns the head of a text variable, to a specified length).

5.2.3 Turing

5.2.3.1 Background

Turing (Holt & Hume, 1984) is an Algol-like language based on Pascal, of interest

primarily because of its pedagogical orientation. The designers of Turing set out

to create a language which facilitates program maintenance and formal

verification, as well as a syntax which does not get in the way of programming

with superfluous details. Turing was also intended to be an effective introductory

programming language, although this was not its sole aim, as another of the

design goals was generality – a general purpose programming language that

overcomes many of the flaws in existing languages such as Pascal and C.

5.2.3.2 Usability

The designers of Turing eliminated many of the more troublesome aspects of

Pascal, and in doing so achieved higher usability in some ways – for example,

Turing drops the requirement for semi-colons as statement terminators, and

possesses more convenient string handling than Pascal. Turing also does not

require a main program statement – a Turing program can be as simple as "put

4+3". In these respects Turing achieves closer mapping to the way students think

and solve problems than Pascal.

5-9

Turing also possesses high consistency, although some aspects of this consistency

can be taken too far, for example the 5 distinct meanings of A(B) (Holt et al, 1988)

discussed further in section 6.1.3. One inconsistency from a novice's point of view

is that input and output statements (get and put, respectively) are not allowed

inside functions, due to Turing's "no function side effects" rule.

Turing is moderately diffuse, opting to use full English words in certain cases to

maintain readability, and maximise role-expressiveness (with considerable

success). For example, the declaration of a pointer in Turing is var p: pointer

to c. Clearly p is a pointer to c. The one problem with role-expressiveness in

this case is that p does not point to c, but rather is an index into c, which is a

collection of dynamically allocated objects of a single type (collections are

further described in section 6.1.6). To compound the confusion, creating dynamic

memory for p is done using the command new c, p even though p is not a new

object of type c, rather it is a new index into c. To use p, the same syntax is used

as an array access - c(p). This problem is discussed in more detail in section

6.1.6.

Turing shares memory management problems with Pascal and C, although they

are mitigated somewhat through the use of collections.

5.2.4 Modula-3

5.2.4.1 Background

Modula-3 (Harbison, 1992) is a procedural language with its roots in Pascal and

Modula. It is a high level language with an emphasis on modularity and multi-

programming. Modula-3 extends Modula-2 to handle object-oriented concepts as

well as possessing automatic garbage collection. The syntax of Modula was

designed to improve on the most commonly used introductory language of the

time, Pascal. According the Reid Report (1999), 48 institutions use Modula,

Modula-2 or Modula-3 for their introductory programming courses (8.8% of total

institutions surveyed).

5-10

The designers of the Modula family of languages aimed at efficiency, improved

learning and ease of use, as well as maintainability.

Because of the aim of efficiency, some hardware dependencies are maintained,

and actually increased compared to Pascal:

The major reason for strictly distinguishing between real numbers and

integers lies in the different representation used internally. Hence, also

the arithmetic operations are implemented by instructions which are

distinct for each type. Modula therefore disallows expressions with

mixed operands. (Wirth, 1988)

5.2.4.2 Usability

The hardware dependencies mentioned above are a problem for Modula in terms

of closeness of mapping. It is natural for a student to add 5.3 and 4 to get 9.3

without considering that 5.3 is a real number and 4 an integer value. The

distinction in Modula between reals and integers, and the requirement that

arithmetic operations be separated for reasons of efficiency, means that even such

simple arithmetic statements require an extra step - generally an explicit

conversion of the integer value to a real one, or vice versa, using a function such as

TRUNC() or FLOAT().

Control structures in Modula generally require a corresponding END statement,

but, unlike Turing, the name of the construct is not paired with the END (as in

if...end if). This decreases verbosity somewhat, but at the cost of increasing

error-proneness, as it becomes increasingly difficult to determine which END

statement belongs to which construct. Consider the following procedure, taken

from Wirth (1988):

5-11

PROCEDURE search(VAR p: TreePtr; x: CARDINAL) :TreePtr;

BEGIN

IF p # NIL THEN

IF P^.key < x THEN

RETURN search(p^.right,x)

ELSEIF p^.key > x THEN

RETURN search(p^.left,x)

ELSE

RETURN p

END

ELSE

Allocate(p,SIZE(TreeNode));

WITH P^ DO

key := x; left := NIL; right := NIL

END;

RETURN p

END

END search

Only careful indentation makes it clear which END relates to which control

structure. The treatment of procedures is also inconsistent with respect to END

statements, in that they are the only constructs which also require a BEGIN, and

which add the name of the construct to the END (as in END search). Modula also

shares its semi-colon behaviour with Pascal, with similarly confusing results.

5.2.5 Prolog

5.2.5.1 Background

Prolog was first designed in 1971 as a tool for processing natural languages

(specifically French) (Colmerauer & Roussel, 1996). A member of the family of

logic programming languages, Prolog allows programmers to create a collection of

clauses which contain both statements of fact (for example: Spot is a dog,

expressed by dog(Spot).) and rules (for example: dogs eat meat, expressed by

dog(X) :- EatsMeat(X).). Prolog can then use backtracking and unification

to determine a result for a query (for example: Does Spot eat meat? Expressed by

EatsMeat(Spot)?, which will give the result Yes.)

5-12

Although Prolog is not commonly used as an introductory language, it is useful to

discuss it here as an example of the logic programming paradigm, which is quite

different to the imperative and object-oriented paradigms more commonly taught

in introductory programming courses.

5.2.5.2 Usability

For logic or constraint programming, Prolog maps very closely onto the problem

domain: specify what is known about the problem, and then query the system for

inferences which can be drawn from that knowledge. However, as discussed in

Chapter 4, Van Someren (1990) found that the Prolog concepts of backtracking and

unification are difficult for novices to grasp. These concepts require hard mental

operations of novice programmers, and sometimes of experts, and mean that more

complex operations in Prolog probably don't map well onto the way students

naturally solve problems. In addition, Van Someren (1990) addresses closeness of

mapping:

The notion of plans may be less useful with Prolog than with imperative

languages, because Prolog has no built-in primitives that correspond

closely to the building blocks of plans, e.g., "repeat an operation until

some condition holds" or "hold this object" have no direct counterparts

in Prolog." (Van Someren, 1990)

Prolog is somewhat terse. It uses symbols rather than words in many instances

(',' for a conjunction, '!' for cut, ':-' to signify a rule definition, ’|' to separate the

head of a list from the tail, etc). Prolog is likely to be error-prone for students who

do not fully understand backtracking, although the language scores well in

consistency.

5.2.6 C

5.2.6.1 Background

C is an imperative, Algol-like language which provides support for systems

programming and hardware device access. While it contains relatively high level

features for structured programming, it also provides low level features such as bit

manipulation and pointer arithmetic. These features add to the power of the

language, and make it suitable for systems programming and direct memory

5-13

manipulation, however they also add complexity and tend to be hazardous and

error-prone constructs.

Noted for its terse and potentially obscure code, C is nonetheless extremely

popular, in part because of the many highly efficient implementations available

for a wide range of platforms, and because of its power and expressiveness. In

some ways C is extremely close in nature to assembly language, with many C

instructions mapping directly onto single assembly language instructions. C is a

powerful and flexible language that allows direct access to hardware-level features

of the machine, making it a useful language for writing device drivers and other

low-level, device specific programs.

5.2.6.2 Usability

C does not score well in closeness of mapping. Although it provides some higher

level data types, such as unions and structs, as well as some support for

abstraction (using the aforementioned data types as well as enumerated types), it

is not closely mapped overall to the way students think and solve problems, due

to its low level features. For example, some features of C, such as the size of an

integer, are hardware dependent, in that they vary depending on the native word

size of the platform on which the code is compiled and run. This problem can

directly impact even on simple novice programs, as an integer that is 16 bits can

easily overflow. This means that in addition to students needing to come to terms

with the basic programming concepts required to write a simple mathematical

program, they must be able to understand why adding 4000 to 30000 results in a

negative number. This complicates the debugging process and requires an

understanding of the details of the implementation that might better be left until

later in the course. Features such as this increase the error-proneness of C

substantially.

Other features which also increase error-proneness are dynamic memory

management in C, and its terse and unforgiving syntax. Many crucial errors in C

compile legally, in some cases without even a warning. For example, the & and *

characters for addressing and dereferencing respectively, are not particularly

mnemonic or memorable, and are frequently exchanged inadvertently, sometimes

producing legal code with surprising results. = and == are a source of

considerable confusion, with the assignment operator often being used in an

expression where a comparison is required.

5-14

There are many ways in which C falls down in terms of consistency. For example,

all variables passed as parameters to the input function, scanf, require an

ampersand character in front of them (eg. scanf("%d",&i);) except for

character strings, which do not require the ampersand. While the reasons for this

are consistent in a technical sense6, they are generally out of students' conceptual

reach until much later in the course, so that the special case must be rote-learned

as a mystifying exception to the rule, rather than understood, and hence

remembered.

Hard mental operations are a problem in C, like Pascal, where dynamic memory is

concerned. In addition, C array subscripts start at 0, requiring surprisingly hard

mental gymnastics when designing a for loop to iterate through an array. This is

compounded by the slightly odd syntax of a for statement, which operates while

the central expression is true, rather than until it becomes true. This means that

iterating through a 10 element array requires either for(i=0;i<10;i++) or

for(i=0;i<=9;i++), which can be translated, respectively, to "start with i equal

to zero, continue while i is less than 10 (but what about the 10th element?)" or

"start with i equal to zero, continue while i is less than or equal to 9 (where did 9

come from? There are 10 elements in my array)", rather than the more intuitive

for(i=1;i==10;i++) - "start with i equal to 1, continue until i equals 10".

Many of the constructs described above are also very poor in terms of role-

expressiveness, most notably the * and & operators. This is, in part, a function of

C's terseness.

5.2.7 C++

5.2.7.1 Background

C++ is an object-oriented language built on top of the imperative language C. It

was first proposed by Stroustrup in 1979 as "C with classes" (Stroustrup, 1994),

which was intended to provide the advantages of Simula's class mechanisms with

the efficiency and suitability for systems programming of C. It is effectively a

super-set of C, offering all of C's features with additional object-oriented

mechanisms. As a result, C++ suffers from many of the difficulties experienced

6 scanf takes a pointer as its argument, and as a character string is an array, the name of the array

is a pointer to the start of the array.

5-15

with C, and adds a new set of quirks and problems. As is typical of object-

oriented languages, it combines the necessity of knowing the principles of the

imperative coding style (which is used at the lowest level, to define methods or

member functions) with the complexities of object-orientation, including

inheritance, polymorphism, and genericity.

C++ is not a pure object-oriented language, and may in fact be used in a

completely imperative style. It has the stated aim of being backwards compatible

with C7. This introduced some complications to the C++ design process. As

Stroustrup himself acknowledges:

Over the years, C++'s greatest strength and its greatest weakness has been its C

compatibility. This came as no surprise. The degree of C compatibility will be a

major issue in the future. Over the coming years, C compatibility will become less

and less of an advantage and more of a liability. (Stroustrup, 1994)

5.2.7.2 Usability

All of the usability issues which apply to C also apply to C++. The addition of

object-orientation arguably helps somewhat with closeness of mapping, since the

language facilitates better encapsulation and design. In addition, some functions

such as input and output are handled more cleanly in C++, so that much of the

confusion surrounding the printf and scanf statements is disposed of. Many

of the new keywords that have been added to C++ are very role-expressive, for

example public, private, class, template. Some of the new concepts,

however, are sufficiently complex that role-expressiveness is a considerable

challenge. Many of these are represented with mnemonic keywords which, while

they cannot convey the full complexity of the construct, are at least memorable

once the construct has been understood, for example, friend, protected,

virtual.

Error-proneness and hard mental operations are at least as problematic for C++ as

they are for C, with similar problems with the terse and unforgiving syntax, and

dynamic memory management. To add to these problems, C++ has default and

implicit behaviours, such as the calling of constructors and destructors, which can

make code even more difficult to decipher, since each step in the code is no longer

traceable without a good knowledge of the underlying execution model.

7 with some exceptions

5-16

Additional hard mental operations may be required, such as to determine which

version of an inherited function is called in a particular situation.

5.2.8 Ada

5.2.8.1 Background

Ada is a powerful object-based language, created and used by the US defence

department to handle large software projects, including some with a realtime

component. While it is primarily used for defence projects in the US and

elsewhere, Ada is also used for some industry projects, and has been widely used

as an introductory object-oriented programming language in tertiary courses

(Allen, Grant, & Smith, 1996).

5.2.8.2 Usability

Some of the Ada features designed to encourage or enforce good programming

practices add significant complexity to even the simplest programs, which leads to

problems with closeness of mapping for beginners. For example, it is necessary to

include the "with package" statement in order to access standard functions such

as input and output. This statement specifies which version of the function should

be used (for text I/O, numerical I/O, file I/O etc). Consider the following

example:

with Ada.Text_IO;

procedure Hello is

begin

Ada.Text_IO.Put_Line("Hello world");

end Hello;

Even coming to grips with this simple program requires dealing with the with

statement, as well as the rather cumbersome Ada.Text_IO.Put_Line("Hello

world");8

Ada is quite diffuse, which allows it to be, in general, effectively role-expressive.

For example, the Ada equivalent of declaring function parameters to be passed by

value or by reference is to declare variables in, out, or in out. An in variable is

8 This cumbersome syntax can be avoided at the cost of introducing another concept: use

Ada.Text_IO;, which automatically searches the Ada.Text_IO library.

5-17

used for passing a value into a function. An out is used for passing a value out,

and in out is used for both. This is more role expressive than C's use of & and *,

and even than Pascal and Turing's var parameters.

Hard mental operations are a problem in Ada, as even simple programs require

students to grasp some fairly sophisticated aspects of object-orientation, and of the

Ada class hierarchy.

5.2.9 Smalltalk

5.2.9.1 Background

Smalltalk is particularly noteworthy for its contribution to the birth of object-

oriented programming (OOP). Whereas many subsequent object-oriented

languages, such as Java, C++, and Ada are hybrid languages, sacrificing

paradigmatic purity for efficiency, convenience, power, or application-oriented

features, Smalltalk is paradigmatically pure. Programs are objects, data structures

are objects, and objects communicate by passing messages to each other.

Messages are analogous to functions or methods, in that a message generally

requests that an object perform one of its repertoire of actions.

5.2.9.2 Usability

Smalltalk does not score well in closeness of mapping for introductory

programmers, since even relatively small programs require students to grasp the

complexities of object-oriented programming, and the Smalltalk class hierarchy (in

addition, this is a source of hard mental operations). It is an extremely consistent

language, adhering precisely to the object-oriented paradigm, and treating all

objects alike. However, it is not entirely consistent with what students already

know, as it does not define arithmetic or boolean operator precedence. This means

that students cannot rely on arithmetic working the way they expect it to. For

example 2+3*4 will produce 20, rather than 14.

Smalltalk is moderately verbose, using words rather than obscure symbols for

most built-in messages, although it does possess some unexpectedly terse

operations, such as "^", which means "return". Smalltalk is not overly error-prone,

although its strict adherence to the object-oriented paradigm does require hard

mental operations of beginners.

5-18

5.2.10 Java

5.2.10.1 Background

Java is an object-oriented language with a syntax which is loosely based on C and

C++. Java owes its popularity in part to the popularity of the World Wide Web,

and the development of Java Applets, which are small programs which may be

embedded in web pages. Apart from the execution model, which is independent

of the actual language itself and not of interest here, Java differs substantially from

C++ in its approach to memory management. While C++ uses pointers and

references, and has no garbage collection, Java has references but no pointers, and

employs garbage collection. This simplifies memory management for the

programmer, possibly at a cost of poor runtime speed, and eliminates pointer

manipulation, which has proven to be a large source of errors in C++.

5.2.10.2 Usability

In order to program in Java for the first time, there are many concepts that

students must either understand or take on faith. Due to the module-based,

object-oriented nature of the language, even the simplest Java program requires a

complex structure, as illustrated by a basic "Hello World" program:

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World");

}

}

This hampers Java in terms of closeness of mapping - novices endeavouring to

solve programming problems in Java must go to considerable lengths to translate

their algorithm into correct Java code. Some simple constructs in Java are

surrounded by complexity, due to the structure of the language. For example, the

definition of a simple constant requires four keywords before the identifier, as

shown in this example:

5-19

public static final double PI=3.1415926;9

The distinction between "reference types" and primitive types passed by value

creates the potential for confusion when using assignment. The effect of the

statement i=j; is dependent on the types of i and j. If they are values of a

primitive type, such as int, then the above statement merely copies the value of j

into i. A subsequent change to j would not change i, and vice versa. If they are

objects or arrays, however, then they are handled by reference rather than value,

and the above statement makes i refer to j. A subsequent change to j will also

show up in i . Although this is likely to be made clearer by subsequent

statements, it is a subtle point that is likely to confuse beginners.

In addition to the confusion created by assignment, testing for equality is also

made more complex by the handling of objects by reference. If i and j are objects,

the expression i==j tests not whether both i and j contain equal contents, but

whether i and j refer to the same object. To test whether the contents are the

same, a specially defined function must be used for comparison.

The use of references does eliminate several sources of confusion in C-like

languages: the difference between pointers and references, the need for

dereferencing, etc. However, it also introduces a new source of confusion, by not

syntactically differentiating objects handled by reference from those handled by

value. This leads to a lack of consistency (from the novice perspective), and

increases error-proneness.

Java is terse rather than diffuse, and the language requires hard mental operations

of students trying to come to terms with the class hierarchy. For example, it can be

difficult to keep track of which version of a function is being invoked, where

inheritance has been used. Java also has some problems with role-expressiveness,

largely due to its terseness, and the complexity of object-orientation. The meaning

of the keywords static and final, for example, are not intuitively obvious

9 public means it is visible and accessible outside its class, static means there is only one

copy of PI regardless of how many instantiations of the class exist (it is a class variable, rather

than an instance variable), final means it is a constant which must have a value assigned in

the declaration, and that value may never change, double refers to a double precision floating

point number

5-20

(although final, at least, is probably memorable once the meaning has been

explained - the object has received it's "final" value, and hence cannot be changed).

5.2.11 Scheme

5.2.11.1 Background

Scheme was developed in 1975 by Gerald Sussman and Guy Steele. It is a dialect

of Lisp, and was originally designed for teaching and research purposes. As a

result, Scheme is substantially smaller than Lisp, with a much reduced (and

simplified) syntax (Dybvig, 1987). The designers of Scheme aimed to produce a

clean, elegant, and consistent language. Scheme is widely used for teaching

introductory programming.

5.2.11.2 Usability

Although smaller than Lisp, the base definition of scheme possesses over 150

procedures and operators, not including features declared optional in the official

report (Abelson et al, 1998). Scheme is a high level language which is relatively

platform independent, although some features, such as numeric representations,

will vary depending on the implementation and underlying hardware. Scheme

also retains some Lisp features which refer to hardware features unlikely to be

familiar to novice programmers, namely car and cdr and their variants (Contents

of Address Register and Contents of Decrement Register respectively). Together

with prefix notation for arithmetic and boolean operators, as well as functions, this

means that Scheme does not map closely onto the way students have previously

learnt to solve problems.

Consider the following Scheme function to calculate the factorial:

(define factorial
(lambda (n)

(let fact ([i n])
if (zero? i)

1
(* i (fact (- i 1)))))))

This example highlights the terseness of Scheme - many parts of this function are

left implicit, for example the return of a value, and the behaviour of the if

5-21

statement10. Due in part to its terseness and the elements of the syntax which are

left implicit, Scheme lacks role-expressiveness. The prefix notation and difficulty

matching parentheses in large programs make Scheme somewhat error-prone, and

lambda calculus is the source of hard mental operations for novice programmers.

5.2.12 Logo

5.2.12.1 Background

Logo was originally designed by Seymour Papert in the 1960s (Papert, 1993). A

dialect of Lisp, Logo was created to encourage learning and creativity, especially

for children. The aim was to create an accessible language which would be easy to

use, with a small learning curve, but nonetheless powerful enough to avoid

limiting users who were ready for more advanced exercises. Early versions of

Logo included a robotic turtle which could be directed to move around the floor,

so that students could see direct and physical results of their programs. With the

development of graphics-capable computer monitors, the turtle moved onto the

screen and became "turtle graphics".

5.2.12.2 Usability

Although it is technically a dialect of Lisp, Logo has a much simpler and more

readable syntax, having done away with the need for large numbers of nested

parentheses, and included infix arithmetic and prefix function invocation. It is

somewhat terse, although many commands have a long form which can be used

initially, and the short forms are reasonably mnemonic. For example, to move the

turtle forward 50 paces, the command is forward 50, which may also be

expressed as fd 50.

LOGO achieves a high closeness of mapping for simple programs, and for turtle

graphics, although more complex programs are further from the sort of language

and problem solving students are accustomed to. Logo is consistent and not

overly error-prone, although some of the syntax can cause confusion, for example

the difference between "name and :name (:name is used to access the value of

name, while "name is used to access the address). LOGO does not require hard

10 the if statement does not explicitly indicate that "if the expression is true, then the return value

is the first statement, otherwise it is the second"

5-22

mental operations, and most of its constructs are very role-expressive. Consider a

LOGO loop:

repeat 4 [forward 20, right 90]

The repeat statement takes a single parameter - the number of repetitions

required. The block of code to be repeated is inside the square brackets, and

forward and right are self-explanatory.

The function definition syntax is similarly role-expressive:

to square

repeat 4 [forward 20, right 90]

end

5.2.13 Haskell

5.2.13.1 Background

Haskell is a functional language designed to be used in teaching, research, and the

building of large scale applications. Its designers aimed to provide a single,

general purpose, and powerful language which would reduce the need for the

wide variety of functional languages currently available. While Haskell is a

purely functional language, intended to be general purpose, rather than

specifically aimed at any particular programming domain, it includes some

features more commonly associated with object-oriented languages, including

polymorphic types, classes, and inheritance.

5.2.13.2 Usability

 Closeness of mapping is an issue in Haskell. While features such as pattern

matching map very nicely onto some problems, Haskell's adherence to strict

functional programming makes some problems rather more cumbersome to solve.

This is largely because the lack of assignment means that temporary variables

cannot be stored - everything is done using function calls and their return values.

This also leads to some hard mental operations, keeping track of, and interpreting,

nested function calls. Some relatively trivial syntactic issues are potentially error-

prone, and inconsistent with what students already know - for example, a function

call in Haskell is not written 'f(x)', which would be consistent with mathematical

notation, instead it is written 'f x'. This fails to take advantage of something

5-23

students already know - ie that f(x) is a call to apply the function f to the value

x.

Haskell is fairly terse, but can maintain high readability even so. More than many

imperative languages, readability in a Haskell program is highly dependent on the

programmer, since so much of the code consists of user-defined functions. Where

keywords are used, their role-expressiveness is generally high, but Haskell tends

to use symbols rather than keywords, for example '++' for string concatenation, '.'

for function composition, and '&&' for boolean 'and'.

5.2.14 Hypertalk

5.2.14.1 Background

Hypertalk (Shafer, 1991) is a scripting language developed for the Apple

Macintosh. Hypertalk is an integral part of Hypercard, a Macintosh application

for building programs and interfaces. Despite rarely being used as an

introductory programming language in a formal setting11, it is worth including

here because of its general popularity and its "Englishy" appearance. In other

words, the language designers intended programming in Hypertalk to be as close

to programming in English as possible, without the ambiguity of natural

language. Hypertalk's original target audience was novice programmers.

5.2.14.2 Usability

 As a result of its closeness to natural language, Hypertalk is easy to read and

maps very closely onto students' algorithms, but it lacks visual structure and

clarity. For example, the following code shows equivalent statements in C and

Hypertalk:

11 Although Hypertalk has been used as a lead-in to an introductory programming course (Katz &

Porter, 1991)

5-24

C Hypertalk

y = 42; set y to 42

myBool = 1; set myBool to true

if (myBool) { if myBool is true then

 x = x + 1; set x to x + 1

} else

else { set x to x - 1

 x = x - 1;

}

This is a trivial example, but it does highlight some of the disadvantages of

verbosity. In the terse C code, the indentation is more obvious than the verbose

Hypertalk equivalent, because there is less text on the page, and the visual

structure is clearer. In this case the braces in the C example are redundant, but a

useful way of enhancing the visual structure.

Some Hypertalk commands silently evaluate in unexpected ways. If an

uninitialized variable is used, or an identifier is left out accidentally, no error

message will be produced, but the statement will not be executed as expected. For

example, the statement

sort by "Date"

will not give rise to an error message, but no sort will take place unless the word

"field" appears in front of "Date". Such constructs are inconsistent with

students' expectations, and are somewhat error-prone.

In general, though, Hypertalk is highly readable and unsurprising, with high role-

expressiveness and a lack of hard mental operations.

5.2.15 Visual Basic

5.2.15.1 Background

Visual Basic is perhaps the most widely used programming language today.

Despite its name, Visual Basic is primarily a text-based language with a tightly-

coupled integrated development environment. Derived from BASIC, a popular

programming language developed in the 1960s, Visual Basic is commonly used for

the creation of graphical user interfaces (GUIs) for Microsoft Windows. The

5-25

"Visual" in Visual Basic refers to the facilities for the creation of GUIs. The

development environment allows the creation of various GUI objects - such as

buttons, menus, windows, and text boxes - at the click of a button, without the

need for any code written by the user. However, these objects nearly always

require code in order to perform the desired functions, so the programmer must

ultimately come to grips with the underlying textual programming language.

5.2.15.2 Usability

Visual Basic scores well on closeness of mapping for creation of visible elements of

user interfaces, as objects may be dragged and dropped, and the form of an

interface can be created quickly and easily. The creation of such an interface

parallels its use, and is simple and intuitive. Unfortunately the underlying textual

language is not as closely mapped onto user experience and expectations. For

example, the code:

Private Test, Amount, J as Integer

declares Test and Amount to be of type Variant (the default data type) and only

J is an Integer, although the code seems to imply that all three variables have

been declared as Integers. The array declaration syntax is also problematic.

When an array is declared, bounds are specified rather than size. This is a positive

step if both bounds are declared, as it makes it clear what the legal bounds of the

array are. Unfortunately the lower bound need not be specified, and it defaults to

zero. Thus the array declaration Dim Counters(15) specifies an array of size

16, going from 0 to 15. This also increases the error-proneness of the language.

Consistency is a problem in Visual Basic. For example, the built-in value

conversion function to convert to a Long is CLng, to a Currency is CCur, but to a

Boolean it is Cbool. Why the 'o' is omitted from Long, or the "b" in Cbool is

lower case, is not clear. Consistency is further threatened by the existence of

multiple syntactic forms for single constructs. For example, the following three

statements all call a procedure, F, with parameters x and y:

F x,y

Call F(x,y)

F a:=x,b:=y

5-26

Role expressiveness could be better in Visual Basic with better choice of keywords:

for example, the keyword Dim, for declaring a variable, is rather obscure. Other

keywords, such as Call, for calling a subroutine, are much more role-expressive.

Visual Basic is effective for event-driven interface programming, but does possess

hard mental operations when the user is trying to keep track of the many different

components of a single Visual Basic program: forms, modules, classes, objects, etc.

5.3 Conclusion

Table 5.2 summarises the usability of the programming languages analysed here.

The optimal values listed are purely from the perspective of novices learning

introductory programming.

The usability issues discussed in this chapter give rise to the question - how do

usability problems in programming languages arise, and how can we prevent

them? Chapter 6 discusses some of the common problems in programming

language design, examining the origins of many popular programming constructs

which cause problems for beginners and even expert programmers.

5-27

Language/

Dimension

O
ptim

al

P
ascal

A
B

C

T
u

rin
g

M
od

u
la-3

P
rolog

C C
+

+

A
d

a

S
m

alltalk

Java

S
ch

em
e

L
ogo

H
ask

ell

H
yp

ertalk

V
isu

al
B

asic

Closeness of
mapping high med high med-

high med med-
high low low-

med
low-
med

low-
med low low high med high low-

med

Consistency high low-
med high high med med -

high low low med high low-
med

med-
high high med-

high
low-
med low

Diffuseness med-
high

low-
med

med-
high

low-
med

low-
med low low low med-

high med low low med low high med

Error-
proneness low low-

med
low-
med

low-
med med med-

high high high med low-
med

med-
high

med-
high med low-

med med med

Hard mental
operations low low-

med low low-
med med med-

high high high high med-
high

med-
high

med-
high low med-

high low med

Role-
expressive-
ness

high med-
high

med-
high

med-
high

med-
high med low low-

med med med low low high med-
high high low-

med

Table 5.2 Cognitive Dimensions of Programming Languages

6-1

6 A theory of bad pedagogical programming language design1

Building on the usability analysis of programming languages presented in

Chapter 5, this chapter describes serious pedagogical problems which are common

to many languages used as introductory programming languages (McIver and

Conway, 1996).

6.1 Language Traps

6.1.1 Less is more

The "less is more" principle appears in many forms, almost all of which seem to be

ultimately detrimental to the learning process. Perhaps the most obvious examples

are the Scheme language and other LISP variants. Scheme has effectively only one

data type – the list – and one operation – evaluation of a list. While this abstraction

is very simple to explain, and not difficult for the beginner to grasp superficially, it

does result in code that is difficult to read because of large numbers of nested

parentheses and the absence of other structuring punctuation.

A "less is more" approach is usually justified in terms of paradigmatic purity: strict

adherence to a single functional, logical or object-oriented paradigm. While this

"orthodoxy" can make for a certain conceptual simplicity and elegance (which can

be of considerable advantage in teaching concepts such as scoping, recursion, and

encapsulation), in practice it can also lead to extremely obscure and unreadable

code. In some cases, relatively simple programs must be substantially restructured

to achieve even basic effects such as input and output.

The underlying pedagogical difficulty is that students are not used to solving

problems in a single pure paradigm. Much of the problem solving they do in the

real world is procedural in nature (cooking a meal, totalling a restaurant bill, etc.),

but other problems with which they are familiar are more amenable to constraint

solving (dispute resolution, holiday planning, budgeting), a functional or pipe-line

approach (collaborative tasks, various types of component assembly), or even

object-oriented methods (using an automatic teller machine, learning physical

skills).

1 Material in this chapter was presented in McIver & Conway (1996)

6-2

The results of enforcing paradigmatic purity can be as simple as the annoying

requirement in Turing that functions have no side-effects, or as far reaching as the

lack of I/O in pure functional languages such as Miranda (Turner, 1985).

6.1.2 More is more

It is equally true that many languages are based on design philosophies which err

in the other extreme. Powerful, real world languages (for example C++ and Ada)

are amongst the prime culprits here. Often such languages are taught by

subsetting – teaching a small but usable part of the language whilst ignoring its

more powerful features.

At first glance this approach seems quite reasonable, but two pedagogical

problems frequently sabotage it. The first is that textbooks and other reference

materials rarely confine themselves to the selected subset. The second is that, even

if the textbook does limit itself to the required subset, the compiler almost

certainly does not. As a result, error messages produced by the compiler, syntax

directed editing provided by the environment, and examples used in the textbook

inevitably refer to parts of the language from which the student is being

"protected" – i.e. have deliberately not been explained or described. The result is

often worse than if the full language was taught: students must still contend with

the full semantics of the language, but much of it has deliberately not been

explained to them. See section 4.4.1 for a more detailed discussion of subsetting.

Writing programs in a subset of a language still requires a working knowledge of,

at the very least, the entire set of reserved words which may not be used as

identifiers, and reserved characters which may not be defined as new operators

(except in the case of deliberate overloading). While attempted compilation may

detect errors such as these, they can be demoralising and frustrating, as they are

errors which the student had no way of preventing, short of checking a list of

reserved words and operators every time a new identifier or operator is declared.

The larger the set of reserved words and operators, the more onerous and

impractical this task becomes, and the greater the likelihood of such errors arising.

Even where these errors are detected, the error messages may not be meaningful

to the student. An error message about a redefinition of something previously

defined, or, worse, simply a syntax error on a particular line, does not provide

clear guidance to a student who knows she has only defined an object once, or

who cannot detect the syntax error on a line which looks perfectly legal (and

6-3

indeed probably is perfectly legal, except for the use of a reserved word of which

the student was unaware).

C++ is certainly one of the most popular languages in "real-world" use and (for

that very reason) is also increasingly widely taught as an introductory language.

One of the justifications typically cited for teaching C++ (Conway, 1993) is the

range of low- and high-level features it provides (from bit manipulation of raw

pointers to templated abstract classes with polymorphic member functions.)

Beginners, however, are notoriously poor at dealing with two or more conceptual

perspectives simultaneously (Hofstadter, 1979). Dichotomies of perspective (such

as syntax vs semantics, static vs dynamic structure, process vs data) complicate the

teaching of any programming language. The availability of very low-level imple-

mentation-oriented constructs and high-level solution-oriented features in a single

language only serves to increase substantially the already considerable cognitive

demands placed on the student.

As well as the obvious concerns regarding learning curves, confusion of levels,

and the difficulties of adequate error detection, a wide range of features

necessitates a commensurately complex syntax and often also entails a host of

implicit operations and function calls, automatic conversions, type inferences, and

resolutions of overloaded functions, variable and function scoping.

Examples of this "creeping featuritis" are easy to cite: C++ provides over 50

distinct operators at 17 levels of precedence, Ada9X has 68 reserved words and

over 50 pre-defined attributes, Modula 3 reserves over 100 keywords, and some

commonly-used LISP dialects ((Wilensky, 1984) for example) define over 500

special functions. Because most textbooks and compilers attempt to cover the full

language, novice programmers are forced to contend with all of these features,

even if they are not using them.

6.1.3 Grammatical traps

Another class of pedagogical problems stems from various kinds of "unfortunate"

syntactic and semantic constructs which are present in most introductory lan-

guages. Some of these constructs arise from the constraints of the ASCII character

set, whilst others are the result of a deliberate "less-is-more" design policy. The

common feature of these problems is that they are analogous to certain

sophisticated grammatical constructs in natural languages, and result in the same

types of learning problems as are seen in natural language acquisition.

6-4

One such construct is the syntactic synonym, in which two or more syntaxes are

available to specify a single construct. An common example of this is dynamic

array access in C, wherein the second2 element of an array may be accessed by any

of the following syntaxes, some of which are legal only in certain contexts:

array[1]

*(array+1)

1[array]

*++array

Less well-known examples include list construction in Haskell (where [1,2,3] is

synonymous with 1 : (2 : (3 : []))) and Prolog (where both

.(a,.(b,.(c,[]))) and [a,b,c] produce the list (a,b,c)).

In themselves, synonyms are a minor irritant. However, they can have a more

serious and insidious effect by blurring the underlying programming concept in

the student's mind, because that concept is no longer associated with a single clear

syntax.

Syntactic homonyms are constructs which are syntactically the same, but which

have two or more different meanings depending on context. Such constructs are

perhaps a more serious flaw in a language, and are unfortunately common. An

extreme example of this3 may be seen in the pedagogically-oriented language

Turing, in which the construct A(B) has five distinct meanings:

• call function A and pass parameter B,

• dereference pointer B to access an object in collection A,

• access the Bth element of array A,

• construct a set of type A with a single element having the value of B.

• create a one-letter substring of the string A consisting of its Bth character,

The student, armed with only a fuzzy understanding of the differences between

these concepts, finds no support from the syntax. It should be noted that the

decision to overload this construct was taken quite deliberately and on

pedagogical grounds:

2 The fact that array[1] refers to the second element of array is itself a grammatical trap.

3 But not as extreme as LISP and its variants, which could be viewed as one massive homonym.

6-5

"Notice that referencing an element of array a with subscript i as in

a(i) is notationally equivalent to c(p). This is an example of uniform

referents, which means that analogous ways of accessing data should be

notationally equivalent." (Holt et al, 1988)

Ada and Turing share a common notation for array indexing and parameter

passing, based on the notion that the expressions myArray(index) and

myFunction(parameter) are analogous, in that they each return a discrete

value. While it draws attention to the similar features of these constructs, using

the same notation for both also hides their differences, and makes it impossible to

tell at a glance whether the statement y:=g(x); is a function call or an array

access, without checking back to find the type of g. The notion of returning a

value applies in both cases, but it is necessary for the programmer to distinguish

between a function call and an array access in order to determine whether a

statement such as g(x):=y; is valid.

Careful and mnemonic choice of names for identifiers addresses this problem to

some extent, but if the names reflect the problem space rather than the language

constructs, the difficulty can still exist. Consider the expression

classroom(fred) - is this an array holding the classroom in which fred can be

found (hence the statement classroom(fred):="4B"; is valid)? Or is it a

function which calculates the appropriate classroom based on fred's year level

and subject profile (in which case classroom(fred):="4B"; would probably

be an error)?

Another difficult grammatical construct which frequently appears in languages is

elision (the omission of a syntactic component). C is well known for its default

integer return value and its curious string literal concatenation behaviour, but

default behaviours occur in many languages, for example:

• Type inference in Haskell. Function definitions in Haskell need not include

type declarations. A function which is defined without a type declaration

will have its type inferred by the Haskell compiler/interpreter.

• LISP super-brackets. The symbol '] ' can be used in LISP to close any

remaining open parentheses. This is a convenient notation, as it avoids long

lists of closing parentheses which can be hard to balance with open ones.

However, it is dangerously error-prone, since an open parenthesis which

6-6

should have been closed earlier in the code may not be detected by the

interpreter once a super-bracket has been used.

• Switch fall-through in C++. The switch statement in C++ is a notorious

source of errors. Each case must be explicitly terminated by a break;

statement, otherwise subsequent cases will also be executed, until either a

break; or the end of the switch is encountered.

• Automated sorting of lists in ABC. Lists in ABC are discussed in more detail

in section 6.1.7.

6.1.4 Hardware dependence

In addition to battling the various syntactic and semantic levels of an introductory

language, the novice programmer is often forced to contend simultaneously with

the constraints of the underlying hardware This burden is often imposed merely

for the convenience of the compiler writer, or in the name of efficiency.

This "closeness to the metal" is particularly noticeable in the design and

implementation of basic numerical and character string types. There seems no

convincing reason why the novice student, already struggling to master the syntax

and semantics of various constructs, should also be forced to deal with the details

of representational precision, varying machine word sizes, awkward memory

models, or a profusion of conceptually-equivalent but semantically-distinct data

types.

The semantics of arrays in Pascal, in which the novice must grapple with the

fundamental type difference of arrays of different lengths, is a notable example

(see section 5.2.1.2). The presence of thirty-two distinct numerical data types in

C/C++4 is another. These types are particularly problematical in C as they are

generally not portable (see section 5.2.6.2). Modula-3 is explicitly and deliberately

hardware dependent, disallowing expressions with mixed operands (integer and

real, for example) for reasons of efficiency.

4 int, short, long and their unsigned equivalents; float and double; and const and/or

volatile variants of each.

6-7

6.1.5 Backwards compatibility

Backwards compatibility is a useful property from the experienced programmer's

point of view, as it promotes reuse of both code and programming skills. Novices,

however, can take no advantage of these benefits (they have no such resources to

reuse) and must instead bear the pedagogical costs they entail.

Backwards compatibility comes in two major forms: genetic and memetic. Whilst

both forms can lead to pedagogically suspect decisions during the design of a

language, genetic compatibility is generally the result of a conscious decision on

the part of the language designers, whereas memetic compatibility is frequently

inadvertent.

6.1.5.1 Genetic compatibility

Genetic compatibility is exemplified by the relationship between languages such

as C++ and C (Stroustrup, 1994), Scheme and LISP (Springer & Friedman, 1989),

and Turing, Euclid and Pascal (Holt et al, 1988). It results from the decision to re-

tain the semantics and often the general syntactic "look-and-feel" of an ancestor

language.

Genetic compatibility need not of course imply the near-complete backwards

compatibility as seen in the C/C++ relationship (Turing and Scheme differ

significantly from their ancestors), nonetheless languages that attempt a

significant degree of historical consistency inevitably perpetuate some

problematical constructs.

Complex arguments are invented to justify features of BASIC that were

originally included because the primitive technology demanded them or

because alternatives were not well enough known at the time the

language was designed." (Papert, 1993)

Language designers occasionally acknowledge the problems that their quest for

genetic compatibility produces:

"At this point, the reader may be confused at having so many ways to

define a function! The decision to provide these mechanisms partly

reflects historical conventions, and partly reflects the desire for

consistency (for example, in the treatment of infix vs. regular functions)."

(Hudak & Fasel, 1992)

6-8

"Over the years, C++’s greatest strength and its greatest weakness has

been its C compatibility. This came as no surprise." (Stroustrup, 1994)

As well as the confusion-of-level problems alluded to in section 6.1.2, the addition

of new concepts to an old language often leads to the creation of the sorts of

synonyms or homonyms discussed in section 6.1.3, as well as the perpetuation of

poorly-designed constructs (such as char* strings in C++) or awkward syntax

(for example, the inexplicably-named5 car and cdr which Scheme inherits from

LISP).

6.1.5.2 Memetic compatibility

Not all syntactic or semantic inheritance stems from deliberate decisions regarding

backwards compatibility. Dawkins (1989) defines memes as ideas which propagate

themselves (unconsciously) from mind to mind. For example, many people

unconsciously imitate their parents' way of doing something − making a cake,

weeding a garden bed, or washing a car. The technique is observed many times

during childhood, and the meme is picked up without the "carrier" even being

aware of it.

Some constructs and symbols seem to propagate memetically across language

family boundaries, and have become de facto standards within the programming

community. This is often despite the fact that such constructs may originally have

been viewed by their progenitors as unsatisfactory compromises and may indeed

have no discernible connection with the concepts they are intended to represent.

Memetic compatibility is surprisingly pervasive and may be seen in the

widespread use of "standard" symbols such as * for multiplication, = or := for

assignment, array[index] for indexing.

The major pedagogical problem with the presence of such syntactic memes is that

they significantly reduce the degree to which the novice, an outsider to the

programmer culture, can rely on existing knowledge (such as ×××× meaning multiply,

or the use of subscripts to represent indexing of a collection).

Unfortunately memetic compatibilities can also be particularly difficult to identify

(and their pedagogical effects correspondingly hard to analyse), precisely because

5 "Inexplicable" in the sense that explaining that they derive from "Contents of Address Register"

and "Contents of Decrement Register" respectively, rarely assists the student's comprehension or

recall.

6-9

both the language designer and the programming teacher are so familiar with

them.

Keywords in programming languages are frequently memes propagated through

from past programming languages. Worse situations arise when memes are

abbreviated, since the novice must then extrapolate an unfamiliar contraction into

an equally unfamiliar term, and then determine the meaning of that term. One

example of this is the keyword var in Turing. Experienced programmers

mentally expand var to variable without effort, but novice programmers,

unfamiliar with the concept of a variable, may find this more difficult, and may

first translate var to variety. Similarly const is probably obvious to anyone with

programming experience, but even knowing that it expands to constant may not

immediately help the novice - "constant" means, among other things, "continuous",

and "occurring frequently". Nonetheless, the keywords const and constant are

taken for granted in programming.

6.1.6 Excessive cleverness

Instances of "excessive" cleverness can be difficult to spot, precisely because the

"excess" often exists only relative to the knowledge level of the novice. Indeed,

frequently the only way to detect excessive cleverness is to witness a novice

programmer's complete misunderstanding of an "obvious" concept.

The premier example of the adverse effects of cleverness in programming

language design (and one which is obvious to programmers at all skill levels)

must surely be the C/C++ declaration syntax (Ritchie, 1996). On the surface, it

seems like an excellent notion: let declarations mirror usage. Unfortunately, the

very concept undermines the principle of visually differentiating semantic dif-

ferences. Students have enough trouble mentally separating the concepts of

declaration and usage, without the syntax conspiring to blur that crucial

difference. Consider the following C declarations:

int i,j,k; /* i, j, and k are all the type at the

start of the declaration - int */

int* i,j,k; /* only i is an int*, j and k are still

ints */

6-10

Sometimes a genuinely clever idea can be sabotaged by its own syntax. For

example, in Turing dynamic memory may be partitioned into strictly typed

"collections", which are then capable of storing dynamically allocated instances of

a single data type. Pointer variables may be associated with a particular collection

and can only be used to refer to data within the collection. This approach provides

strong type checking of dynamic memory and enables the compiler to catch and

accurately diagnose the majority of common pointer manipulation errors.

Unfortunately, this genuinely clever idea is disastrously undermined by poor

choice of syntax:

% Declare a collection to store instances of SomeDataType

var collectionName : collection of SomeDataType

% Declare a pointer

var ptr : pointer to collectionName

% Instantiate a new object of SomeDataType

new collectionName, instance

Students immediately (but erroneously) conclude that:

• collectionName is a variable. It's not, it's actually a partition of dynamic

memory and does not have the full semantics of a variable. Unlike variables,

collections cannot be assigned, compared or passed as parameters. They

cannot be named in a const declaration, nor can they be renamed using a

bind statement.

• ptr can be used to point to collectionName. It can't, it can only be

used to point at instances of SomeDataType allocated within the partition

accessed via collectionName.

• instance is a new instance of type collectionName . It isn't. Rather,

instance points to an instance of type SomeDataType newly allocated

within collectionName.

6.1.7 Violation of expectations

As the last example in the previous section indicates, violating a reasonable

expectation is probably the worst pedagogical sin that an introductory

programming language designer can commit. Some examples are very well-

known, such as the C++ expression:

6-11

if (x=1 || -10<y<10)

{

/* WHATEVER */

}

in which the condition always evaluates to true (regardless of the values of x and

y) whilst, as a side effect, the value of x is silently reset to 1.

The expression x=0, rather than being a test to see if the value of x is 0, actually

assigns the value 0 to x. Even experienced programmers who are familiar with

this trap often still write = where they intend to write ==. This is a natural

response to the spoken pronunciation of the expression: "x equals zero".

Particularly insidious is the fact that this code is perfectly legal and compiles

without even generating a warning under many compilers.

The expression -10<y<10 does not, as one might reasonably expect, evaluate to

the equivalent mathematical expression and test whether -10 is less than y which,

in turn, is less than 10. Instead, C defines that the first comparison should be

evaluated, with the result of that comparison then being used in the second

comparison. In other words, if -10<y evaluates to false, the final expression to

be evaluated is false<z. Due to the definition of true (non-zero) and false

(zero), the expression effectively becomes 0<10. This can be particularly difficult

to detect since, depending on the value of y, it will not always produce the wrong

answer, and it does not trigger an error or a warning at compile time.

A less obvious example of syntax violating expectations is the use of % as a

comment introducer in Turing. The following code is syntactically correct and

semantically valid, but will result in unexpectedly low pass rates, since the %

makes the rest of the line a comment:

passMark := bestMark * 50%

Semantic violations of expectation are even less excusable, but regrettably more

common. For example, consider the list type in the ABC programming

language. A novice may have written a seemingly straight-forward program to

store a list and then print the first element:

PUT {"first", "second", "third", "fourth", "fifth"} IN list

WRITE list item 1

He may well be considerably puzzled and disheartened when the result appears:

6-12

"fifth"

The blame for this minor failure can hardly be laid on the novice, who may simply

have forgotten (or perhaps never grasped) the fact that ABC lists are automatically

sorted on input. The fault lies squarely with the language designer. Although a

sorting function is an extremely useful capacity in a language, hidden side effects

such as this can be highly confusing for the inexperienced user, especially when

the "magic" gets in the way of the programming task.

Even the semantics of fundamental and nearly universal programming memes,

such the while loop and the finite precision integer, can be surprisingly difficult

for students to comprehend. A while loop doesn't execute "while" its condition is

true, but rather until its condition ceases to be true at the end of its associated code

block. Finite precision integers don't obey the familiar rules of whole number

arithmetic and can also cause much confusion when overflow, underflow or

truncation produce consequential errors (which may manifest well after the actual

numerical error occurred).

The Prolog equality operator (X=Y) violates expectations in another way, in that it

implies an assignment of reference as a side effect:

"If X is an uninstantiated variable and if Y is any object, then X and Y

are equal. As a side-effect, X will be instantiated to whatever Y is. [When

X and Y are both uninstantiated,] the goal succeeds, and the two

variables share. If two variables share, then whenever one of them

becomes instantiated to some term, the other one automatically is

instantiated to the same term." (Clocksin & Mellish, 1981)

Ada possesses a convenient notation for accessing partial arrays, known in Ada as

"slices".

For example:

Value_Record(1..20) := Value_Record(21..40);

While this notation is extremely convenient, it has a potential drawback if a slice is

passed as a parameter – the formal parameter possesses the same index range as

the slice. In other words, passing a slice from 21..40 bestows the index range 21

to 40 on the formal parameter inside the subroutine. For example:

File_Name : String(1..32);

procedure Open (The_File : in String);

6-13

and then, in the body of Open:

if The_File(1) = ’Y’ then...

would raise an exception in the case of the following call

Open(File_Name(16..32));

because index 1 is out of bounds in the array slice passed in

(File_Name(16..32)).

Attributes can be used to avoid this problem (The_File’First instead of

The_File(1)), which reinforces a more general and arguably less error-prone

syntax. Nonetheless, it is unusual, and potentially error-prone, for the range of the

formal parameter not to be independent of the range of the actual parameter. The

use of the term First in the attributes of the parameter acknowledges that

The_File clearly has a first element, but it cannot be accessed as The_File(1)

unless the range of the actual parameter can be guaranteed to start from 1 every

time.

6.1.8 Dangerous side effects

Many otherwise effective and usable constructs possess dangerous side effects

which can prove surprising and problematic for beginners. These side effects

tend to arise for two reasons

1 . The side effect was deliberately added to the language as a means of

circumventing some other problem, or to provide a more convenient and

powerful mechanism for solving a particular programming problem, or

2. The side effect is an unintentional result of the pursuit of efficiency or power.

For example, Pascal contains some side-effect traps for unwary novice

programmers (and even for experts). The Pascal for loop, eg for i := 1 to

num do, has a clear syntax - it is reasonably obvious that i takes values from 1 to

num (although the step size (1) is not explicitly stated here, it is a reasonable

default). But Pascal allows the programmer to modify the value of i inside the

loop.

6-14

For example:

 for i := 1 to num do

 BEGIN

i:=num;

writeln(message);

 END;

This is useful where the programmer wishes to break out of the loop before the

specified number of iterations has been performed – just set the value of i to num

and the loop will terminate – but if the modification of i is inadvertent (i might be

passed as a var parameter to a subroutine), or simply ill-thought out, the loop will

exhibit unexpected behaviour and cause confusion for the novice programmer.

6.1.9 Fitting the wrong model

Sometimes programming languages cause problems for programmers because the

design of certain features is based on the wrong model of computation. For

example, the C requirement for an & before the variable in a scanf statement is a

logical way to indicate that the address of the receiving variable is to be passed to

scanf, rather than the value. Given an understanding of the difference between

calling by reference and calling by value, this makes sense.

However, students using scanf for the first time rarely possess such an

understanding. Moreover, they are likely to be ill-equipped to understand the

concepts involved, having just begun to learn programming. Asking the students

to accept the necessity for the & without understanding its use causes problems as

soon as arrays of characters, or strings are used. To read in a string of text into a

character array the & is not used, since the value of a char * variable is already

the address of the start of the array. The use of I/O in C is not easily deferred

until later in the course, as it is the only way for students to see the results of their

programs, so this problem is not easy to handle.

As described in section 5.2.6.2, C also has a potentially troublesome for loop.

Most versions of a for loop go from a starting point to an end point, as in

for i:=1 to 10 , where i starts off with the value 1, and is incremented by one

each time through the loop, until i is equal to 10, which is the last time through

the loop.

6-15

C, however, uses different semantics for the for loop, using three statements to

set up the loop. Traditionally the first statement is an initialization (such as i=1;)

the second statement is an expression which must evaluate to true (non zero) for

the body of the loop to be executed (such as i<10;) and the third statement is an

increment (such as i++;). Even in this traditional usage, the for loop poses

some traps for unwary novices. Rather than the common model "for index:=x

to y; execute for all values of index from x to y inclusive, incrementing by

steps of 1", the typical C version uses a different model:

"for(statement1; statement2; statement3) : On the first time through

the loop, execute statement1, then if statement2 is true, execute the body of

the loop, and then execute statement3. On subsequent passes through the loop,

do not execute statement1, but while statement2 is true, repeatedly execute

the body of the loop followed by statement3."

Because the second statement acts like the condition of a while loop, the loop

for (i=1;i==10;i++) will not be executed even once, because the test i==10

fails on the first pass. Instead, the statement i<=10 is needed to achieve the

same result as for i:=1 to 10.

6.2 Summary

This chapter has described some pedagogical problems which are frequently

found in languages used for introductory programming. Chapter 7 takes the next

step on the road to the design of a pedagogically sound introductory

programming language − the construction of a theory of good pedagogical

programming design. This theory will provide a positive framework of design

goals and principles which can be used in the design of a usable introductory

programming language.

7-1

7 A theory of good pedagogical programming language design1

As discussed in Chapter 4, there are some basic requirements to be met in order to

achieve meaningful learning. Meaningful learning takes place when new

knowledge can be attached to an existing cognitive framework, and learning is

most difficult when new knowledge actually conflicts with what is already

known. As a result, an introductory programming language will be most effective

if it can match what students already know wherever possible. Where matching

existing knowledge is not possible, sometimes the best the language can do is to be

so different as to avoid conflicting with it.

An effective tool or application allows the user to focus on the task to be

performed, not on the tool itself (Norman, 1998). By extension, an effective

programming language facilitates programming, rather than getting in the way.

The goal is to create a programming language that adheres to usability principles:

one that maps closely onto the way users think and solve problems, is consistent,

does not require hard mental operations, is not error-prone, and is high in role-

expressiveness (see section 5.2).

7.1 The issues

7.1.1 Concepts to be taught

Programming is, of necessity, a practical subject. The theory of programming is

difficult, if not impossible, to teach in isolation from the practice. An introductory

programming course needs to involve a programming language, although it may

aim to teach the fundamental concepts behind programming, not specifically a

particular paradigm or a particular language. Programming must be experienced

and practised in order to be comprehended fully.

There is some consensus on the concepts that need to be taught when teaching

programming, although there is little agreement about how those concepts should

be taught (Brilliant & Wiseman, 1996; Brusilovsky et al, 1994; McIver & Conway,

1996), or indeed at what point in the course each concept should be introduced.

There is some weight to the argument that pointers and references, for example,

should be postponed until novices have built some confidence and gained more

1 Material in this chapter was presented in McIver & Conway (1996)

7-2

basic skills. Others argue that pointers take a long time to come to grips with, so

students should start the process as early as possible.

Some of the fundamental programming concepts involved in an introductory

course are listed here:

• algorithms

• data structures

• sequence/flow of control

• selection

• iteration

• functions

• recursion

• abstraction

7.1.2 Motivation

The style of language can impact on the motivation level of students. Motivational

tools can be "added extras": For example, Blue (Kfl lling, 1996a), although it is a

relatively complex object-oriented language, has achieved considerable

motivational success with students through the inclusion of an adventure game

project where students can alter an existing game, changing existing modules and

adding new parts to the game. Similarly, LOGO (Papert, 1993) uses its turtle

graphics concept to encourage experimentation and creativity, and some packages

have graphics and interface libraries that give students an easy way to create

interesting interfaces to their programs.

While it is often "gimmicks" such as those listed above that increase motivation

levels most dramatically, the language itself can be a drain on motivation if it is

too frustrating and difficult to learn. A language that is hard to read and uses

obscure operators and keywords can drain student motivation, particularly for

those students who lack a strong computing background.

7.1.3 Implementation issues

The challenges of implementation should not be considered in the design process.

Implementation issues have coloured the design of many existing programming

languages, affecting everything from the size of an integer to the inclusion or

7-3

exclusion of features purely for reasons of speed and efficiency, such as the

exclusion of automatic garbage collection in C++. In an introductory

programming language, speed and efficiency are not primary considerations. The

language must certainly compile and run within a reasonable time frame, to avoid

frustration and the loss of motivation and concentration, but this requirement is

easily met with existing technology, without requiring extremes of efficiency.

7.2 General design imperatives

The theory of pedagogical programming language design constructed as part of

this thesis hinges on three high-level design imperatives: facilitate learning,

maximise readability, and minimise unproductive errors. These imperatives

guided the development of the lower level, specific design imperatives used to

direct the design process.

7.2.1 Facilitate learning

A teaching language should facilitate learning to program. This means not getting

in the way of learning by causing unnecessary syntax errors and having

excessively complex semantics. Facilitating learning requires support for the

concepts students need to learn (see section 7.1.1), informative and non-

threatening feedback on errors, and a minimum of distraction from the

development environment.

7.2.2 Maximise readability

There are two primary aspects to the learning of programming - one is the ability

to write a program, the other is the ability to read code. While both reading and

writing programs require a certain amount of skill and familiarity with the

programming language, it has long been acknowledged (Green, 1989) that reading

a program written by someone else can be extremely difficult, unless the program

is deliberately written in a readable way.

One goal of an introductory language, then, is to support and encourage

readability as a product of the nature of the language, rather than simply to allow

readability as a possible alternative for those programmers who wish to make the

extra effort. Ideally an introductory language would actually make it difficult to

produce unreadable programs.

7-4

7.2.3 Minimise unnecessary errors

While errors are an important part of the learning process, not all errors are

productive errors that facilitate learning. Trivial, frustrating and disruptive errors

can actually hinder the learning process, leading to phenomena such as learned

helplessness (see section 2.4.4). Small syntax errors that disrupt the flow of work

without leading to meaningful feedback, such as leaving out a semicolon, or using

the wrong type of bracket, can impede learning and make learning to program a

frustrating and unhappy experience. The design of an effective pedagogical

language minimises the incidence of these unnecessary errors.

7.3 Specific design imperatives

The example design process carried out for this thesis has lead to the formulation

of a number of low level design rules. Not every rule can be satisfied by every

construct, and some rules have higher precedence than others. Taken together,

these rules provide a framework for the design of a programming language that

possesses high usability in the context of teaching introductory programming.

More generally, many of these principles apply equally well to the design of a

usable programming language for expert programmers.

7.3.1 Start where the novice is.

A fundamental aspect of learning is the process of assimilating new concepts into

an existing cognitive structure (Thorndike, 1932; Ausubel, 1963; Rumelhart &

Norman, 1978). This process, known variously as connecting, accretion, or

subsumption, is made all the more difficult if parts of the existing structure have to

be removed (unlearning) or restricted (exceptions).

Hence, the novice who must unlearn that ×××× or • means multiply, and then

substitute * in a programming context, faces a harder learning task than the

student who can continue to put their knowledge of ×××× to use. Similarly, students

have a large corpus of knowledge regarding integer and real arithmetic, that

cannot be capitalised upon if they must disregard it to cope with finite precision

representations.

Another example of this type of difficulty is the use of = variants for assignment.

Many students, when confronted with this operator, become confused as to the

nature of assignment and its relationship to equality. For example, seeing the

following statements :

7-5

X = 3

Y = X

Y = 7

such students often expect the value of X to be equal to 7(Du Boulay, 1989). The

equivalent sequence:

X ←←←← 3
Y ←←←← X
Y ←←←← 7

seems to evoke less confusion, possibly because the syntax reinforces the notion of

procedural transfer of value, rather than transitive equality of value.

As part of this thesis, over one thousand novice programming students were

shown the C/C++ expression:

"the quick brown fox" + "jumps over the lazy dog"

and asked what they believe the effect of the + sign is. None of them has ever

(correctly) suggested that the + sign is illegally attempting to add the address of

the locations of the first characters of the two literal strings. Without exception,

they believed that the + should concatenate the two strings.

Introductory languages should be designed so that such reasonable assumptions

based on prior non-programming-based knowledge remain reasonable

assumptions in the programming domain. In other words, the constructs of a

teaching language should not violate student expectations. Note that this principle

has both syntactic and semantic implications in the selection and definition of

operators, functions, and inbuilt data types.

Existing knowledge should not be contradicted. New knowledge that conflicts

with existing cognitive structures causes cognitive dissonance, and is much harder

to understand and retain than knowledge that either fits into existing cognitive

structures or requires the creation of entirely new structures. In this respect it is

preferable to introduce an entirely unknown operator, rather than "misuse" a

known one. For example, "eq" might make a better choice for equality testing

than "==". The more features in a language that conflict with what students know

or the way they think, the more difficult it will be for them to learn, and the more

error-prone it is likely to be.

7-6

7.3.2 Avoid jargon

Jargon is difficult to avoid, in part because it is difficult for an expert to identify

jargon that will be unfamiliar to a beginner. Jargon in programming languages

applies to both keywords and operators, as well as to the environment and

support tools such as help systems and text books. Avoiding jargon involves

avoiding using operators and keywords simply because they are memetic

programming "standards", or because they are familiar to the language designer,

and instead choosing the most novice-appropriate words and symbols for the

construct. This is particularly challenging because it requires designers to identify

their own cultural biases.

Avoiding jargon requires careful analysis of the reasons for selecting each and

every construct. Keywords are particularly difficult to analyse, because they are

often so familiar to experienced programmers. Consider the Modula-3 keywords

INC and DEC. In English, the abbreviation "inc." usually means "including" or

"incorporated", while "dec." usually means "deceased" or "declared". Experienced

programmers, even those who have no experience of Modula-3, are likely to

recognise INC and DEC effortlessly as increment and decrement, but these

meanings may not be so obvious to novices.

7.3.3 Favour simplicity over power

A feature should never be included simply because it is powerful - it must also be

intuitive, readable, and easy to understand and use. Powerful features are useful

for experienced programmers, making complex programs simpler and easier to

write, but for novice programmers, an excess of powerful features can be counter-

productive.

Some powerful features obviate the need for students to learn how to solve a

particular problem themselves, for example sort functions, or lists that are

automatically sorted. Others can actually be obstructive and dangerous, with

unexpected consequences. For example, equality testing in Prolog, which has the

side-effect of assignment of reference, if one of the variables is uninstantiated (see

section 6.1.7).

7.3.4 Make features self-explanatory

It is important that constructs should stand alone without requiring extra

explanation. It should be possible for a novice to determine the workings of a

7-7

construct from code examples. In other words, the role-expressiveness of each

construct is important to the overall usability of the language.

This means that any construct that does not possess clear and logical semantics

should only be included where there are strong reasons for doing so, which

outweigh the disadvantage of the extra explanation required. Though it is

unlikely that a construct will be fully understood without experimentation and or

some instruction from a teacher, a fellow student, a textbook, or a help system,

these aids should never be relied upon to make the construct usable.

The Turing collection construct is a good example of a feature that is not self-

explanatory, largely due to the lack of correspondence between syntax and

semantics (see section 6.1.6). The complex semantics of a collection require

considerable explanation.

7.3.5 Avoid unexpected results

Automatic and default behaviours can be extremely confusing for a novice.

Implicit behaviours that silently change the state of a program or variable can be

responsible for the violation of reasonable expectations. The behaviour of a

construct should be able to be anticipated or assumed. Where behaviour is more

complex than the syntax expresses, the complexity should be made explicit, with

extra syntax if necessary.

Implicit calls to functions, such as constructors and destructors, are undoubtedly

powerful and useful constructs for expert programmers who are aware of the

rules for their use, and the situations when they will be called. Novices, however,

do not yet possess this understanding, and may be puzzled when trying to debug

a program that appears to be doing things they have not told it to do.

Unexpected results can challenge students' mental models of the virtual machine,

and lead them to believe that the machine has powers that it does not, or does not

have powers that it actually does. For example, lists that are automatically sorted

can lead students to believe that all data structures are automatically sorted, or

that the computer "knows" more than it does, so that variables named maximum

will automatically contain the largest value, etc. By the same token, an attempt to

read in a number from the keyboard that fails due to a decimal point (as may

happen if a real value is mistakenly read in to an integer variable in Pascal) may

lead students to believe that real values cannot be read in from the keyboard.

7-8

7.3.6 Never complicate the simplest programs

Any construct that introduces changes to the most basic operations, such as I/O or

simple assignment and arithmetic, should be approached with extreme caution.

The priority for a pedagogical language aimed at under-confident beginners is an

easy, painless, and confidence-building experience, particularly initially. The

introduction of a relatively advanced feature should be viewed with caution,

particularly if that feature forces a simpler construct to become more complicated

in order to preserve consistency.

For example, if the introduction of file input and output requires the specification

of streams for keyboard and screen I/O, then the first few simple programs

students write have been complicated unnecessarily.

7.3.7 Maximise "knowledge-in-the-world"

As discussed in section 2.5.2, knowledge-in-the-world is information that can be

extracted from the tangible and visible parts of a structure, and which therefore

need not be remembered. Knowledge in the world is closely related to role

expressiveness (see Chapter 5). In a programming language, knowledge-in-the-

world can be defined as syntax that clearly indicates the nature of the construct it

represents. Maximum knowledge-in-the-world means that the amount of details a

programmer must remember can be minimised. In other words, each construct

should be carefully crafted to contain as much information as possible in its

keywords and general structure.

7.3.8 Use differing syntax to differentiate semantics.

Novices experience great difficulty in building clear and well-defined mental

models of the various components of a programming language. Syntactic cues can

be of significant assistance in differentiating the semantics of various constructs.

Constructs that may, to the accomplished programmer, seem naturally similar or

analogous in concept, functionality, or implementation2 still need to be clearly

syntactically differentiated for the novice. It is unhelpful to novices to highlight

the similarities of such constructs with similar (or worse, identical) syntaxes.

2 for example: using the integer subset {0,1} as a substitute for a true boolean type; arrays being

analogous to discrete functions of finite domain and range; arrays being implemented via

pointers

7-9

Initially, such syntactic overloading blurs the crucial differences by which students

can first discriminate between programming concepts; later it robs them of the

opportunity to consolidate understanding by identifying these underlying

conceptual connections themselves.

The Turing and Ada construct A(B), discussed in section 6.1.3, is an example of

semantically different constructs that are insufficiently distinguished syntactically.

7.3.9 Make the syntax readable and consistent.

Novice programmers, like all novices, have a weak grasp of the "signal" of a new

concept and are particularly susceptible to noise. This suggests that an

introductory programming language should aim to boost the conceptual signal

and reduce the syntactic noise. One obvious means of improving the S/N ratio is

to choose a signal with which the recipient is already familiar. For example:

• if rather than cond

• head/tail rather than car/cdr

• ×××× rather than *

Another approach is to select signals that are consistent, distinct, and predictable.

For example, delineating code blocks within constructs by <name>...end<name>

pairs:

loop
if isValid(name)

exit loop
end if
output name
name ←←←← getNextName()

end loop

It can be difficult to steer an appropriate path between the syntactic extremities of

"less-is-more" and "more-is-more". On one hand, reducing syntactic noise might

involve minimizing the overall syntax, for example:

if x < y
 y ←←←← x
else
 x ←←←← y

rather than

if (x LT y) {
y := x;

} else {
 x := y;

}

7-10

Alternatively, it may be better to increase the complexity of the syntax in order to

reduce homonyms that blur the signal. For example, the meaning of the various

components of the Turing expression3:

f(C(p).A(I))(N)

might be better conveyed with the syntax:

f(C::p->AI)[N]

The second form, whilst regrettably no more mnemonic than the first, does at least

provide adequate visual differentiation between pointer dereference, array

indexing, function call, and substring extraction.

7.3.10 Provide a small number of powerful, non-overlapping

features.

It can be argued that a large language that contains many features and multiple

ways of performing each task is more likely to be able to provide the best possible

way of solving any problem. This is useful for an expert who has already come to

grips with the concepts underlying programming, and who is experienced in the

use of different types of language constructs. For a beginner, though, it is better to

be able to associate each part of a problem with a single clear solution.

In the same way, it is easier to remember each possible operation if it has a single

clear construct associated with it. In the short term, while students are becoming

familiar with the fundamental concepts of programming, the fewer constructs

they must come to grips with the better. A smaller, simpler language will be

easier to master than a larger more complex and powerful one. The needs of the

brighter, more experienced students (who will run up against the limitations of

the language sooner) must be balanced against the needs of those students with no

computing background.

Homonyms and synonyms are an acute problem in the design of a teaching

language. One way to contend with these pedagogical impediments is to select a

small set of orthogonal language features and to assign them distinct (and

mnemonic) syntactic representations.

3 "Create a substring consisting of the Nth letter of the string returned by the function f when

passed the Ith element of the array member A of the object within collection C that is pointed to

by p".

7-11

A side effect of this approach is that, as the number of language constructs is

restricted, those that are chosen must inevitably become more general and

probably more powerful. In particular, it is important to provide basic data types

at a high level of abstraction, with semantics that mirror as closely as possible the

"real-world" concept those data types represent.

For example, it seems reasonable that an introductory language should not

provide separate data types for a single character and a character string. Rather,

there should be a single "variable length string" type, with individual characters

being represented by strings containing a single letter.

Likewise, an introductory language need only provide a single numeric data type

that stores rational numbers with arbitrary precision integer numerators and

denominators. The restriction to rationals still allows the educator to discuss the

general issue of representational limitations (such as the necessary approximation

of common transfinite numbers such as π and e), but eliminates several large

classes of common student error that are caused by misapplication of prior

mathematical understanding to fixed precision arithmetic. A single, arbitrary

precision numeric type has the additional benefit of eliminating many hardware-

dependence problems.

Other features that might be provided include:

• A single non-terminating loop construct, possibly modelled on the Turing or

Eiffel loop statement, with an associated exit loop command.

• A single generic list meta-type, allowing the user to define homogeneous or

heterogeneous lists, indexed by any well-ordered type (integral numeric,

boolean, string).

• A single, consistent model and syntax for I/O (see below).

7.3.11 Be especially careful with I/O.

With growing awareness of the importance of software usability, it is natural that

students should be encouraged to engineer the input and output of their programs

carefully. Too often, however, they are hampered by "more-is-more" programming

language I/O mechanisms that are needlessly ornate or complicated.

The essence of I/O is very simple: send a suitable representation of a value to a

device. The complexity frequently observed in the I/O mechanisms of

7-12

introductory languages often stems from a desire to provide too much control

over the value conversion process.

Somewhat surprisingly, the C++ language, not otherwise known for its

friendliness towards the novice4, provides a reasonable if somewhat over-featured

model of I/O. Turing also offers a very straightforward I/O model and syntax.

The I/O mechanism for an introductory language should be defined at the same

high level of abstraction as the other language constructs. The basic features of a

good pedagogical I/O model might be:

• a simple character stream I/O abstraction, with specific streams (for

screen, keyboard, and possibly files) represented by variables of special

inbuilt types. I/O is often one of the first constructs students use, so it is

important that it should be simple and logical from the students' point of

view. For example, the commands "print x to file", and "read x

from file", while somewhat verbose, are role-expressive.

• a single input syntax and a single output syntax for all data types (for

example, infix "input" and "output" operators that may be applied between a

stream variable and a heterogeneous list of values and/or references).

Novices are unlikely to recognise any conceptual difference between

printing a number, and printing some text. A simple syntax which treats all

data types alike will be easy for students to grasp, and to use.

• a default idempotent5 I/O format for all data types (including character

strings and user defined types). Idempotence ensures that there are no

unexpected results when students use I/O. It maximises consistency and

makes I/O constructs more predictable.

• Choice of appropriate formatting defaults for justification, output field

width, numerical precision6, etc. Specification of formatting details for

4 or indeed towards the expert!

5 Idempotency of I/O implies that the input and output format for any type are exactly equivalent.

That is, if the output of one variable is used as the input to another, the effect is exactly equivalent

to assignment between the two. Input/output of character strings is notoriously non-idempotent

in most programming languages, because strings are typically written in their full length but read

only to the first whitespace character.

6 Note that idempotent I/O implies that output of rational numeric values should be at maximal

precision by default, and may require special formats for recurring decimals.

7-13

output, in particular, complicates the syntax of an otherwise simple I/O

statement. The Turing output statement, put x, is a good example of a very

simple output statement that novices can use immediately, without

explanation of any complex formatting syntax. Sensible default formats,

such as putting a space between each output value, minimise the details

students must struggle with in order to view the results of their programs.

• A reasonable, automatically deduced output format for user-defined data

types. For example, output each globally accessible data member of a user-

defined type, one value per line.

• A simple and explicit syntax for specifying non-default output formatting.

For example, a generic leftjustify function to convert any value to a left-

justified character string of specified field width.

However, when it comes to including these features in a language, it turns out that

some apparently ideal features do not lend themselves to an obvious and intuitive

syntax, or they clutter and complicate the simpler features more than their

usefulness justifies. For example, including an automatically deduced output

format for user defined data types, such as structures, necessitates a similar

automatically deduced input format. This leads to assumptions about which

member of a structure will be read in first. Although this can be verified by

checking the definition of the structure, it may not correspond to the order of use

used in user-defined functions, and could be a source of confusing and hard-to-

find errors in novice programs. This is probably an example of excessive

cleverness (see section 6.1.6), as well as a default, implicit behaviour that may

prove confusing to a novice.

7.3.12 Provide better error diagnosis.

There is a widely cherished belief amongst educators that one of the ways

students learn best is by making their own mistakes. What is often neglected is

that this mode of learning is only effective when the student's otherwise random

walk through the problem space can be guided by prompt, accurate, and

comprehensible feedback on their errors.

Making and correcting an error is certainly a useful experience for expert and

beginner alike, but the process of correction can be tortuous without meaningful

guidance. Compiler error messages are often couched in unnecessarily terse and

technical jargon that serves to confuse and distress the student. By the time the

7-14

messages have been deciphered and explained by a teacher or tutor, any useful

feedback that might have been gained has been largely negated by the delay and

stress involved.

The type of feedback that students receive when compiling their programs is

typically along the lines of these real world examples:

Syntax error on line 4 (which may not be on line 4!)

Not implemented: & of =

No subexpression in procedure call

Application of non-procedure "proc"

Even should they manage to compile their program, run time errors typically

produce unhelpful feedback like:

Segmentation violation: core dumped

Application "unknown" has exited with error code 1

<<function>>

Error diagnosis is a weak point of most compiler technology, yet it is the compiler

feature that most novices spend most of their time interacting with. Although

well-designed error feedback is not unknown (Turing is exemplary in this respect)

many language implementations, particularly interpreters, have little or no error

diagnosis. In these cases, errors are detected when the program executes in some

unexpected way. Detecting and correcting errors in these implementations can be

extremely difficult, particularly for a beginner, who may be uncertain what the

expected behaviour of the program actually was.

For an introductory language, error messages should be issued in plain language,

not technical jargon. They should reflect the syntactic or semantic error that was

discovered, rather than the behaviour of the parser. Error diagnosis must either be

highly reliable or, where this is infeasible, error messages must be suitably non-

committal. For example, given the statement:

int F(UnknownType);

a widely-used C++ compiler emits the error message:

')' expected

 rather than explaining that:

7-15

An undefined type 'UnknownType' was used in declaring

the parameter list of function 'F'.

In this case even a vague message like:

There seems to be a problem in the declaration of the

parameter list of function 'F'

would be of more use than the actual error message.

A clear, simple and accurate error reporting mechanism is clearly critical to the

usability of an introductory programming language. Such a mechanism must

mandate plain language error messages and should ideally provide multiple

levels of detail in error messages (possibly through a "tell-me-more" option).

Common compilation errors (such as forgetting end-of-statement markers, or

mismatching brackets) should be accurately diagnosed and clearly reported. Cases

where the root cause of the error is not easily determined should be reported as

problems of uncertain origin, with one or more possible causes offered in suitably

non-committal language.

Run-time errors should likewise be clearly and accurately reported, at the highest

possible level of abstraction. It may be sufficient for the expert to be informed that

a segmentation fault has occurred, but the novice needs a hint as to whether the

event was caused by an array bounds violation, an invalid pointer dereference, an

allocation failure, or something else entirely.

7.3.13 Choose the appropriate level of abstraction.

When first introduced to programming, students often have trouble finding the

correct level of abstraction for writing algorithms. Some expect a very high level of

understanding from the computer, even to the extent of expecting variable names

to affect the semantics of the program. For example, they may assume that

naming a function max is sufficient to ensure that it computes the maximum value

of its arguments. Others attempt to code everything, including basic control

structures, from scratch. To require algorithms to be coded in languages with

extreme levels of abstraction (for example: high-end logic, functional, or pure

object-oriented languages, or low-level assembler) merely compounds the

students' already abundant confusion.

It is critical for an introductory language to approximate closely the abstraction

level of the problem domain in which beginners typically find themselves

7-16

working. Hence it is appropriate to provide language constructs suitable for

dealing with basic numerical computing, data storage and retrieval, sorting and

searching, etc. For most introductory courses, language features that support very

low-level programming (for example: direct bit-manipulation of memory) or very

high-level techniques (such as continuations) will merely serve to stretch the

syntax and semantics of the language beyond the novice's grasp.

7.3.14 Use a sensible, unsurprising type system

Type systems are usually categorised as either strong or weak. Language

definitions mandate strict or semi-strict type checking in the compiler (or,

occasionally, no type checking at all). Rather than discuss typing in these

technical, computing terms, it is appropriate here to examine the consequences of

the type system for the novice. As with the selection of paradigm, the choice of

type system should be based on making the system as unsurprising, consistent

and usable as possible, rather than on purity of concept.

It is often argued that a strict type system is safer for novice programmers, as it is

more likely to detect and correct errors in the compilation phase. This example

from Haskell, though, demonstrates the danger of strict type checking on a

strongly typed language.

As noted by Hudak & Fasel (1992), the type system can cause confusion for a

novice, for example the following code, although it looks legal, will not compile:

main = print (average[1,2,3])

average xs = sum xs / length xs

Which, using the Haskell compiler hbc (hbc, 1998) produces the error message:

Errors: "average.hs", line 3, [56] Not an instance

Prelude.Fractional Int in (/) (((sum):::a2950)

A1_average) (length A1_average)in average

The problem is caused by the numeric type system, in which numerals are

overloaded rather than implicitly coerced to the correct type. Because the /

operator requires Fractional arguments and length returns an Int, an explicit

cast must be used:

average :: (Fractional a) => [a] -> a

average xs = sum xs / fromIntegral (length cs)

7-17

Modula-3 imposes similar type strictness upon programmers (see section 5.2.4.2),

for reasons of efficiency.

Like everything else in an introductory language, the type system should not

spring these types of nasty surprises on novice programmers. Novices expect to

be able to carry out the kinds of calculations they are accustomed to, in a manner

as close as possible to the way they would normally do them. In a sensible,

unsurprising type system, numbers can be manipulated in standard ways -

integers can be added to real numbers without the need for explicit conversion

routines, etc.

7.3.15 If it's not obvious, leave it out

Any feature that does not have an obvious and clear representation, particularly

when the possible representations each have significant drawbacks, must be

considered suspect. Unless there are compelling reasons for the inclusion of the

feature, bearing in mind the introductory nature of the language and the short

time it will be used, the feature should be excluded. As well as avoiding the

inclusion of confusing features that do not add significantly to the functionality of

the language (in its intended setting), this rule helps keep the language small and

the syntax minimal.

7.4 Summary

This chapter has described the construction of a theory of good pedagogical

programming language design. A language which adheres to this theory will not

conflict with beginners' existing knowledge, and will support the learning of

concepts fundamental to programming. It will, as far as possible, be consistent

with students' expectations, and map closely onto their problem solving

techniques.

Just as no battle plan survives contact with the enemy, no pedagogical language

design (no matter how sound its design principles or clever their realization) can

hope to survive contact with real students. Yet the outcomes of such encounters

are the only meaningful measure of the success of an introductory language. This

implies that the most important tool for pedagogical programming language

design is usability testing, and that genuinely teachable programming languages

must be evolved through prototyping rather than springing fully-formed from the

mind of the language designer.

7-18

Chapter 8 describes the application of the design theory outlined here to the

design of an introductory programming language. Subsequent chapters describe

and analyse the evaluation and testing of the language.

8-1

8 Case study: Applying the design process: GRAIL

The definition of the GRAIL programming language proceeds from the

hypothesis that it is the unfamiliarity of the "hieroglyphics" (i.e. the language

syntax) and the sheer complexity of the full theory that are the primary stumbling

blocks for the novice. Hence GRAIL is designed to provide a means for the novice

programmer to explore the most fundamental concepts of programming, without

the need to wrestle with the arcana of real-world syntax or the full power of

complex semantics.

The GRAIL language is extremely small (its full grammar fits comfortably on three

pages (see Appendix A)), and designed to present imperative programming

concepts through a syntax that is consistent with the student's prior

(mathematical) experience. The syntax also maps isomorphically to the small

number of language constructs.

GRAIL is specifically designed as a short-term introductory language. Typical

problems tackled by students using GRAIL include real world tasks such as

calculation of annual tax payable based on weekly salary rates, building databases

of music or student marks, and solving simple mathematical problems such as the

computation of Fibonacci numbers and factorials.

The language described in this chapter is exactly as it was tested by students

during the evaluation process described in Chapter 9. Changes made subsequent

to the evaluation are described in Chapter 10. The next section discusses the

design principles that have supported the above goals.

8.1 Design of GRAIL

The main aim of GRAIL is to facilitate the teaching and learning of programming.

Existing introductory languages (including real world languages not designed for

teaching) often impede the learning process by forcing novice programmers to

spend their time focusing on obscure details of syntax and unnecessarily complex

semantics. On the premise that students’ time could more profitably be spent

concentrating on algorithms and problem-solving skills, GRAIL was designed to

be intuitive and unsurprising to a novice programmer.

Unlike many languages used for introductory programming courses (McIver &

Conway, 1996), GRAIL’s principle design rationale is strictly pedagogical in

8-2

nature. Every decision made during the design of the language was made on

pedagogical grounds, following the principles of pedagogical language design

outlined in Chapter 7. Implementation issues were not considered, nor were

political or historical considerations taken into account. Inevitably GRAIL bears

some resemblance to existing languages (in part because some programming

languages have features which meet the aims of GRAIL very well), and the biases

and programming experience of the designer have inevitably had some influence

on the language. However a process of testing and revision has been undertaken,

in order to minimise the deleterious effects of such influences. No feature was

included in GRAIL simply because it exists in some other language or

programming paradigm.

Many programming languages were considered during the design process (see

Chapters 5, 6, and 7), and these languages covered many paradigms - some of

them were intentionally paradigmatically pure, while others were powerful

hybrid languages that include features from a number of different paradigms.

While the procedural paradigm was selected for GRAIL as being closest to the

style of instruction that students were most likely to be familiar with (from

recipes, instruction manuals etc), there was no attempt to adhere strictly to a

particular paradigm, and features from many different paradigms were

considered for inclusion in the language.

It is interesting, then, that the final language design is purely procedural, despite

the decision having been made that paradigmatic purity was not a design

criterion. Many of the cleverest and most interesting features that were

considered for adoption from other languages and paradigms were rejected on the

grounds that they complicated the language unnecessarily. These included

pattern matching, sophisticated list constructs with indices of arbitrary type,

classes, and functions as first class objects. In order to retain truly clean and

consistent syntax and semantics, it was necessary to restrict the number of features

in the language to only those that were deemed absolutely essential.

It is true that this approach limits the power of GRAIL considerably - it is not

difficult to come up with functions that cannot easily be implemented in GRAIL,

and typical first programming exercises that cannot be set. For example, the lack

8-3

of pointers and references makes a swap procedure1 difficult to write (although a

version can be written using structures).

At the same time, however, it is also no challenge to produce a wide range of

programming tasks that are easily implemented in GRAIL, and that allow

students to create substantial programs whilst avoiding the complexities and

confusion of more powerful languages. For example, students can write programs

to keep track of their music collections: adding, deleting, sorting, and searching

for the titles and artists of their CDs. They can build databases that keep track of

the marks of all students in a class, and search to find the student with the best

marks, or all the students who are failing the subject.

Bright students will indeed encounter the limits of the language. These students

can be redirected into other tasks that are not limited by the language, and they

can be given the task of designing ways around the limits. It is not necessary (in

fact it may be counter-productive) for the language to be easy and well-suited to

the bright students, but it is critical that it be well suited to the struggling students

for whom it is intended. If further testing revealed that advanced students quickly

become frustrated with the limitations of the language, libraries of graphics

functions could be added to stimulate and retain their interest, or the course could

be streamed so that advanced students finish with GRAIL sooner than those who

are struggling to come to grips with computer programming.

It is intended that GRAIL would be taught for a single semester at most, and that,

having laid a solid foundation of understanding of the fundamental programming

concepts, the course would subsequently move to a more complex, powerful, and

"difficult" language. GRAIL is intended as a means for students to quickly acquire

programming concepts, without getting bogged down in complex semantics or

ornate and unfamiliar syntax. In other words, GRAIL is designed for teaching

programming, rather than for doing programming.

8.2 General Design Principles

The theory of pedagogical programming design outlined in Chapter 7 can be

distilled into three guiding principles: syntactic predictability, memetic

compatibility, and minimalism.

1 that swaps the values of two variables – the traditional example is
swap (a,b) {tmp=a; a=b; b=tmp;}, where a and b are passed by reference

8-4

These three principles and their application to the design of GRAIL are discussed

in this section.

8.2.1 Syntactic predictability

The need for "consistency" is a rare point of consensus in the literature on

introductory programming language design (Brilliant & Wiseman, 1996; McIver &

Conway, 1996; Budd & Pandey, 1995; Kölling et al, 1995; Levy, 1995; Conway,

1993; Murnane, 1993; Meertens, 1981). Consistency is, however, a slippery concept,

particularly in the context of programming language syntax. As discussed in

Chapter 6, certain kinds of apparent consistency (such as syntactic synonyms and

homonyms (McIver & Conway, 1996), or declarations that mimic their subsequent

usage (Ritchie, 1996)) actually make learning harder for the novice, by muddying

semantic and conceptual distinctions between language components.

Such self-defeating forms of "consistency" may be avoided by, instead, striving for

"predictability". For example, in GRAIL:

• Every construct that forms an aggregation (such as a structure declaration,

the body of a subroutine, or a loop block) is bracketed in a keyword...end

keyword pair. Hence it is immediately possible to determine which

aggregation a "closing bracket" refers to. Contrast this with the use of

"anonymous" begin...end blocking in Pascal (Feuer & Gehani, 1984).

• In all types of declarations, the keyword is denotes the declaration of a type

equivalence (i.e. between two types), whilst the keyword holds denotes the

declaration of a type relationship (i.e. between a type and an instance). This

contrasts with the use of : for both these purposes in Eiffel (Meyer, 1992).

• The input and output syntaxes are identical for all types. This contrasts with

the specificities of scanf() and printf() in C (Feuer & Gehani, 1984).

• GRAIL's syntax and semantics are isomorphic. That is, every syntactic

component of GRAIL has a single meaning and every GRAIL construct has a

single syntax. This contrasts with the five distinct, context-sensitive

meanings of A(B) in Turing (Holt & Hume, 1984), the numerous reference-

generating mechanisms in Perl (Wall et al, 1996), or the multiple ways of

accessing arrays in C (see section 6.1.3) (Ritchie, 1996).

8-5

8.2.2 Memetic compatibility

As noted in section 2.4.5, "Cognitive dissonance" (Corsini, 1994) is the discomfort

engendered by information that is incompatible with existing knowledge. Apart

from the obvious negative reinforcement it produces in the student, cognitive

dissonance also sets up a "belief bias" (a tendency to discount the significance of

dissonant information (Evans et al, 1983)) that impairs learning.

The design of GRAIL addresses these impediments to the acquisition of

programming skills by grounding the syntax of the language in terms and

symbols likely to be familiar to the average novice programmer, and by

deliberately avoiding widely-used programming "memes" (McIver & Conway,

1996) that have meanings inconsistent with everyday usage.

Thus GRAIL uses ÷÷÷÷ and ×××× for multiplicative operations, since they are likely to be

more familiar and "intuitive" to the novice than the computing standards / and *.

Conversely, GRAIL does not use while as a keyword for repetitions, since

mapping the usual while condition do statement(s) syntax back to

English often results in the mistaken assumption that the condition is tested at

every point in the loop (see section 6.1.7).

8.2.3 Minimalism

GRAIL has been designed to be used in a short, preliminary “programming

concepts” course. For this reason, the overriding design principle has been

Occam's Razor (Thorburn, 1915). When a useful but non-essential construct was

overly complex, or did not have a single obvious syntax, as well as intuitive and

exception-free semantics, it has been omitted from the language.

These omissions include:

• direct access to individual characters of a string,

• a distinct syntax for extracting characters

• string concatenation

• dynamic arrays or lists

• structured loops

• case statements

• pointers and references

8-6

• reference parameters in subroutines

• explicit initialization

• object-orientation

• first class functions or closures

• nested functions

Specific rationales for each of these decisions are presented in the next section.

Although this policy has led to the exclusion of many constructs that

programmers will eventually encounter, the resulting simplification makes the

remaining (and more fundamental) concepts of programming, which GRAIL does

convey, that much easier for the beginner to grasp.

8.3 Significant Features

8.3.1 Imperative

GRAIL is an imperative language. This paradigm was selected, after much

deliberation, because it represents a style of algorithmic expression that students

are already familiar with (from previous interactions with instruction books,

recipes, navigational directions, shampoo bottles, etc.), and because it is the

paradigm most widely favoured in actual teaching. The Reid Report (Levy, 1995)

shows that 48.7% of surveyed institutions use an imperative language in their

introductory course, 36.2% use object-oriented or object-based languages, 12% use

the functional language Scheme, another 2.4% use functional languages such as

ML etc, and 0.7% use other languages. The Reid report is somewhat inaccurate,

because it relies on institutions to update their entries in the report, rather than

actively polling for current languages in use. Nonetheless, it remains the widest

survey of introductory language use in tertiary teaching institutions.

It is widely argued (Kölling & Rosenberg, 1996; Kölling et al, 1995; Meyer 1992;

Booch, 1991) that, given the increasing popularity of object-oriented languages in

industry, an object-oriented introductory language eliminates the need for a later

paradigm shift.

However, it might also be argued that, rather than removing the paradigm shift,

this approach merely moves it to the beginning of the students' computing

education, when they are least equipped to deal with it.

8-7

Moreover, nothing is lost by teaching GRAIL ahead of an object-oriented

language, since (with the possible exception of non-method subroutine calls) all

the concepts GRAIL teaches – type vs instance vs value, aggregation, repetition

and selection control structures, I/O, scoping, etc. – are also used in object-

oriented languages.

8.3.2 No pointers or references

Pointers and references are notoriously difficult for students to grasp. While they

are extremely powerful programming constructs, they are also hazardous and

error-prone (McIver & Conway 1996). Novice programmers are ill-prepared to

make use of the power, but fall easy prey to the pitfalls. In a language that

possesses sufficiently powerful data structures, there is little reason to use pointers

and references early in the course.

For a teaching language that is not intended for long-term use, "sufficiently

powerful" need not imply significant complexity. A language with numbers,

structures, strings and arrays is powerful enough for the implementation of a

range of relatively complex algorithms, without introducing the confusion and

difficulty of pointers and/or references. Even dynamically-linked lists can be

implemented by using array indices instead of pointers2.

Other options were considered for GRAIL in order to retain the power and

flexibility of passing by reference, and still avoid the difficulties of pointers.

One option considered was the Ada parameter passing syntax, which allows the

creation of in, out and in out parameters (see section 5.2.8.2).

This is a useful idea that reflects the problem-space more than the underlying

machine code, in contrast to the traditional pass by value or reference models. The

Ada model encourages programmers to think about the use of parameters in

advance, and to specify the precise way each parameter will be used in the

subroutine.

The addition of this syntax, however, can clutter a function definition:

function factorial (n: in Integer) return Integer;

2 Using an array of structures, where the structure has a number field which holds the index of the

next item in the list.

8-8

and is not intuitive to read. Spoken out loud, "function factorial takes n in integer"

may not be entirely clear.

Most importantly, the addition of extra calling modes in addition to call-by-value

requires students to come to grips with the difference between the different

modes. Although the in/out syntax is clearer than some of the more obscure

specifiers in use (such as * &), it is still an added cognitive burden for relatively

small gain. Allowing call-by-reference does broaden the range of subroutines that

can be written in the language (making traditional examples like the swap

function possible), but the range of subroutines that can be written without this

feature is sufficiently large to sustain a moderately complex introductory course.

8.3.3 Non-ASCII characters

The non-ASCII Unicode characters

• ←←←← (\u2190) (assignment)

• ×××× (\u00d7)

• ÷÷÷÷ (\u00f7)

• ≤≤≤≤ (\u2264)

• ≥≥≥≥ (\u2265)

• ≠≠≠≠ (\u2260)

 are used as operators in GRAIL , rather than the more familiar (to experienced

programmers) symbols = or :=, /, *, >=, <=, and != or <>. This decision was

made in order to remain as consistent as possible with students' existing

knowledge. While much of students' educational background cannot be assumed,

it is reasonable to rely on a working knowledge of basic mathematical notation.

Given a user-friendly coding environment, there is little reason for adhering

exclusively to the ASCII character set. While the symbols for multiplication,

division, etc. are a relatively trivial part of the language, learning new symbols

adds further complexity and confusion to an already difficult task.

The reasons for choosing ÷÷÷÷, ××××, ≤≤≤≤, ≥≥≥≥, and ≠≠≠≠ are self-evident, but the choice of

←←←← (rather than some "=" variant) is discussed in section 7.3.1.

8-9

8.3.4 A single numeric type

In most languages, the distinction between reals and integers is usually made for

reasons of efficiency, and the specific details (such as the size of an integer) are

dependent on the underlying hardware. In languages such as C, the difference

between an int and a long int can be critical. (see section 6.1.4)

Because novices rarely differentiate between natural and rational numbers, neither

does GRAIL. Instead, the language provides a single numeric type (number),

thereby avoiding the extra conceptual level of hardware-based distinctions

between floating-point and integer (McIver & Conway, 1996). The number type

provides arbitrary precision rational numbers, which avoids confusing overflows

and other mysterious fixed-precision side-effects.

8.3.5 Static arrays

Arrays in GRAIL are indexed with integers starting from 1 and may contain any

single type, including user-defined types. The size of an array is fixed, having

been specified in the variable's declaration. However arrays used as subroutine

parameters may be declared without a fixed size, thereby allowing a single

subroutine to accept arrays of any size.

At first glance, requiring bounds specifications in variable declarations, but not in

parameter declarations may seem inconsistent. However, when designing a

subroutine it is logical to specify the type of the array without the bounds, as in

"an array of numbers" or "an array of texts", as the bounds are rarely relevant to

the type signature of the subroutine. In other words, whether a subroutine can

usefully be applied to a specific array is rarely dependent on the bounds of that

array, rather than on the contents3. All array accesses are bounds-checked at

runtime.

Dynamic arrays were considered for inclusion in GRAIL, but were rejected

because they introduce a surprising level of semantic complexity. Consider the

statement:

array1[i] ←←←← array2[j]

3 Except in extreme examples, such as where an array is of zero length (and hence has bounds 0

and 0).

8-10

It is unclear what the appropriate behaviour of this statement is under the

following conditions:

• i equals length(array1)+1 Assigning a value to a position in the array

that is out of bounds by 1 position has unclear semantics if arrays are

dynamically extensible – should it assign the value to a newly created

position, effectively extending the array by 1 element? Should it produce an

error?

• i equals length(array1)+2 Assigning a value to a position that is out of

bounds by more than 1 position is even less clear – if a new element is

created dynamically, are the intervening elements also created, and if so

with what values?

• j equals length(array2)+1 Reading the value of an array position that

does not yet exist logically produces an error – but what if writing to that

position of an array automatically extends the array? Does consistency

demand that reading and writing have matching semantics for matching

situations? If so, an explicit "undefined" value could be returned, but it is

still unclear whether the position should be instantiated as a result of the

read, particularly if the index is out of bounds by more than one position.

Some of these dilemmas are addressed by making arrays only explicitly extensible,

in other words requiring an explicit statement extending the array before any new

positions can be accessed. The use of non-contiguous arrays (that is, arrays that

may have uninitialized gaps) also solves some of these problems but only by

greatly increasing the complexity of the array concept. This "cognitive cost" may

outweigh the potential benefits of dynamic arrays. Overall, the benefits of

dynamically extensible arrays did not justify the cost.

Also considered were user-defined arrays with indices of any strictly-ordered

type. For example, since character strings may be strictly ordered, character

strings were considered as legal indices for an array. This allows a range of data

structures such as a database of telephone numbers, indexed on surname:

phonebook["mciver"] ←←←← 99055210

phonebook["jones"] ←←←← 99055555

While this is a powerful and useful addition to the language, it has several

attendant difficulties:

• Appropriate declaration is not intuitively obvious (and difficult to make

concise and readable):

8-11

item phonebook is array of 10 number indexed by text

item phonebook is text indexed array of 10 number

item phonebook is array of 10 number with text index

item phonebook is array of 10 number[text]

• Unlike an array indexed numerically (and contiguously), specifying an array

of 10 items with strings for indices does not specify the indices. Assigning

something to an array position therefore means initialising the index as well

as the value of the array at that position.

• There is no obvious way of cycling through an array indexed with strings,

unless it is also mapped by default onto integers, in which case position 1

may change depending on what items are created. This problem could be

solved using an "indices" function which returns a new array containing

the indices of the first array, this time indexed with integers, but this

complicates the construct somewhat.

• What should be the appropriate behaviour when a new item is created and

the array is already full? Does the first item get overwritten? Does the last

item get overwritten? Is it a runtime error?

Once again the ambiguities and problems associated with indexing arrays with

strings outweigh the potential benefits.

8.3.6 Line-based strings

Real-world manipulation of character-strings requires powerful and complex

mechanisms, that are inappropriate for a teaching language. GRAIL provides a

simple string type (text), that is defined as a line of characters. There is no

separate character type; a single character is a text of length 1.

The choice of the line as a unit of text is unusual, but fits well with the common

novice uses of strings – as prompts, labels, output decoration, and simple data.

More importantly, using an entire line as an atomic string makes it possible for

GRAIL to provide fully idempotent I/O (see below).

More unusual still is the fact that GRAIL text values are truly atomic. That is, it is

not possible to access an individual character in a text directly. This decision was

taken because it reduces the syntactic complexity of the language, by eliminating

syntactic puns (McIver & Conway, 1996) such as:

var[10] ←←←← "a"

8-12

where the semantics of this statement depends entirely on the (possibly distant)

declaration of var (as either a text or an array of text).

Many such syntactic puns are particularly relevant to dynamically resizable

strings. A string type that cannot be dynamically resized is cumbersome in

situations where the same string variable is used for different length strings at

different points in a program. The simplest technique for handling this situation –

making the string large enough to deal with all possible strings, engenders poor

programming habits, as this is a most inefficient use of space, particularly in larger

programs.

Removing direct access to characters also eliminates the need to define semantics

for assignment to invalid indices or assignment of multi-character strings to single

elements, for example:

var ←←←← "123456789"

 Assuming var has been declared as a text variable, the above code makes var a 9

character string.

var[7] ←←←← "ABC"

There are several possible interpretations of this statement. The code could:

• place the start of the new string "ABC" at position 7, overwriting positions

7, 8, and 9, and thus create the string "123456ABC"

• replace the current value of var[7] (7) with the whole three character

string, and thus create the string "123456ABC89"

• simply produce an error.

Similarly, the following code has several associated problems:

var[10] ←←←← "A"

It might:

• produce the string "123456789A"

• be an error to assign to an uninitialized position in the string, in which case

there is the problem of determining valid code for extending an existing

string, or initializing a new one

• initialize the string correctly, in which case, since assigning a literal string to

a text variable is valid initialization in the first instance, it is unclear whether

8-13

it should be valid subsequently, or if it is only valid to assign to a complete

text variable, rather than to a specified position in the text.

The following statement is also problematic:

var[100] ←←←← "A"

• If it is legal to assign to an uninitialized position in a string, thus initializing

it, then it must be determined whether it is only legal for the next available

uninitialized position, or if a string can be sparse and have characters only at

selected positions. Only assigning to the next uninitialized position requires

the programmer to know the length of the string in advance, which is likely

to lead to error-prone code when novices use hard-coded numbers instead

of ascertaining the length of the string each time.

• If it is not legal to have a sparse string, the code may initialize the

intervening positions in the string with some default character, such as a

space, or it could produce an error.

Substring extraction possesses similar ambiguities. If it is valid to refer to a

substring, perhaps using syntax such as myString[4...6], then a number of

ambiguities arise. Assuming myString begins with the value "ralph", in the

case of myString[1..3]←←←←"fred", where the substring on the right is longer

than the substring specified on the left, the appropriate behaviour in this case

could be to:

• produce a runtime error

• insert "fred" in place of characters 1 to 3, and move the subsequent

characters along to make space for the fourth character, to produce

"fredph"

• insert "fred" at the start of the string to produce "fredralph"

• overwrite characters 1 to 4, producing "fredh"

Similar problems arise if the substring on the right is shorter than the substring on

the left, as in the case of myString[1..3]←←←←"A", which could mean:

• produce a runtime error

• insert "A" in place of characters 1 to 3, producing "Aph"

• insert "A" in position 1, but leave the rest of the string the same, producing

"Aalph"

8-14

These problems can be avoided by making it illegal to assign to a substring, but

since in all other ways a substring is identical to a string − it can be printed out,

passed to a subroutine as a parameter, etc − this would be inconsistent, and

potentially confusing.

As strings are dynamically resizable, treating them as special types of arrays also

leads to the logical assumption that arrays are also dynamically resizable. In turn,

this leads to all the problems described above - whether arrays can be extended

simply by assigning a value to the next sequential element, even if it doesn't yet

exist, etc. In addition, the declaration of an array includes its size, whereas the

declaration of a string does not. If strings are arrays, this is inconsistent. If strings

are not arrays, but are instead an atomic type − a line of text − then they need not

be treated the same way as arrays in order to maintain consistency.

String concatenation creates similar problems. String concatenation done using a

function call is somewhat ambiguous: concatenate(string1,string2)

could mean:

• concatenate string1 and string2 and store the result in string1 or

• concatenate string1 and string2 and return the result without changing

the values of string1 or string2

Although this is arguably less ambiguous than the indexing problems discussed

above, there were insufficient strong reasons for including string concatenation to

outweigh the ambiguity. The rule in section 7.3.15 was invoked: If it's not

obvious, leave it out. Since there is not an unambiguous representation for string

concatenation, and its presence in the language would not offer substantial gains,

it was not included. Should it be subsequently proven that string concatenation is

necessary to the language, a function could be added without disturbing the

existing syntax.

8.3.7 Idempotent I/O

As suggested in (McIver & Conway, 1996), the input and output operators in

GRAIL are idempotent in effect. That is, an input followed by an output is "value-

preserving" in all cases.

Most languages provide non-idempotent I/O, which frequently leads to

significant confusion for novices. For example, in most languages a character

string is read in to a variable until the first whitespace character is encountered.

8-15

However, when the same variable is written out the entire string it contains

(including any embedded whitespace) is printed.

GRAIL's use of line-based strings (text) and arbitrary-precision rationals

(number) makes idempotent I/O of its basic data types automatic, and hence

unsurprising.

8.3.8 Associative comparisons

GRAIL provides associative comparisons, so that the GRAIL expression 1<x<10

is valid and behaves as students naturally expect, resulting in a boolean value

(true if x is between 1 and 10, and false otherwise).

8.4 Language Overview

8.4.1 Comments

Comments in GRAIL are prefixed by “|” and run to the end of the line. For

example:

write factorial(x) | call factorial and print result

The "|" character, whilst not particularly mnemonic, at least has no other meaning

which might confuse the students. The vertical line has the advantage of

symbolically dividing the code from the comments.

8.4.2 Types

GRAIL provides three fundamental data types: number (arbitrary-precision

rationals), text (atomic line of characters), and boolean.

Type aliases may be created:

type scoretype is number

type a_name is text

Array types, implementing collections of elements of simpler type, may be

defined:

type marklist is array of 10 number

type daily is array of 52 ×××× 7 marklist

8-16

Automatic pluralisation4 was rejected for being too complex. Students must learn

what can and can't be expected of a computer programming language, and

automatic pluralisation of types, especially if it were to take into account user-

defined types, requires fairly sophisticated processing, although it can be done for

English words (Conway, 1998).

However, consider the case of a student for whom English is not the first

language, who wishes to create a type named in his or her native tongue. If

GRAIL handles automatic pluralisation for types named in English, students may

reasonably expect that it also handles automatic pluralisation in other languages -

it may seem to be all part of the "magic" by which GRAIL "knows" that an array to

hold more than one ox actually holds oxen, or that an array to hold more than one

student holds students, but an array to hold more than one fish holds fish.

In addition, English is sufficiently complex that the algorithm described in

Conway (1998) is not perfect. For example, an earlier version of the program

incorrectly inflected human to humen, because the algorithm specified that any

word ending in "man", such as "man", "workman", or "caveman" should, in the

plural form, end in "men". Although this particular example has been corrected,

more unusual cases come to light from time to time. The cases where the

algorithm behaves unexpectedly could have disastrous consequences for a novice

trying to develop a model of the computer's behaviour.

Structured types, which aggregate heterogeneously typed data, may also be

defined:

type student_data has

field name holds a_name

field mark holds scoretype

field ID holds text

end type

The first version of structured types in GRAIL omitted the keyword field, to

look like this:

4 such that first declarations would become: type marklist is array of 10 numbers

8-17

type student_data has

name holds a_name

mark holds scoretype

ID holds text

end type

The extra keyword was added to be consistent with the constant, item, and

type declarations.

Also considered was the addition of another keyword to specify the structure

definition, such as structure, so that the structure definition would look like

this:

structure student_data has

end structure

This was rejected in favour of making the declaration of these user-defined types

explicitly type declarations. This makes the contrast between item declarations

and structure declarations clearer.

Type inference, as found in languages such as Haskell, was considered for GRAIL.

When considering this feature it was necessary to examine the cognitive aspects of

type specification. Type inference obviates the need for explicit declaration

statements, and makes polymorphic functions simple and elegant to implement,

since a function can be defined with no explicit type. The type is then inferred at

runtime from the function invocation, based on the combination of the actual

parameters and the formal function specification. For example, the simple Haskell

function:

first(a,b,c) = a

can be invoked on any tuple containing three items. There is no restriction on the

types of the three items – they need not even all be the same type5.

5 The function can be rewritten for homogeneous lists rather than heterogeneous tuples using

square brackets: first[a,b,c]=a Interestingly the type of the list version of the function is

inferred as [a]->a, meaning the function takes a list of objects and returns a single object of the

same type. The inferred type implies that the function can take a list of any length, but in fact it

can only take a list of length 3, as specified in the function definition.

8-18

The following invocations are all valid and work as expected:

first("fred","ralph","arnie") -- prints "fred"

first("fred",2,3) -- prints "fred"

first(1,2,3) -- prints 1

However, there is some value in forcing students to consider (and declare) the

types of their variables explicitly. This often helps in tracking down errors, since if

the type declaration mismatches with the use of the variable, it is a compile time

error and easily detected and corrected. Haskell allows variables to change type

during the life of a program (so that let a="ralph"; let a=1; is quite valid

code). This allows what Bonar and Soloway (1985) term "multirole variables".

These were found to be "bug generators"6 in novice code, because the multiple

uses of a variable sometimes clash (for example where a variable is simultaneously

used as a loop counter and a place to store a sum being calculated in the loop).

Type inference could be used where the type of a variable is fixed once it is first

determined, which is the way ABC handles types, but again the advantage of

explicitly declaring the type, and forcing students to state their intentions

explicitly, is lost.

8.4.3 Values

Literal values of type number are decimal values of arbitrary length. Note that

there is no exponential notation available.

Literal values of type text consist of any sequence of characters (except '"') on a

single line, enclosed in matching quotation marks.

For example:

• "enter new value",

• "the data you entered was not valid",

but not:

• "a line containing the " character", or

• "text which, within a single set of quotes, spans two or

more lines".

6 A source of errors. See Chapter 4 for more detail.

8-19

Literal values of type boolean are true and false.

Neither arrays nor structures have an associated mechanism for specifying

compound literals. In the case of structures, this is because specifying values for

individual fields of a structure without naming the fields is error-prone, as it

requires knowledge of the order of declaration of the fields (something which is

not required anywhere else in a GRAIL program).

Specification of compound literals for single dimensional arrays is

straightforward, using syntax along the following lines:

myArray ←←←← {1,2,3,4,5,6,7,8,9,10}

Multi-dimensional arrays are more complex, however. Among the possibilities for

the specification of a 2 by 4 array are:

myArray ←←←← { {1,2} {3,4} {5,6} {7,8} }

myArray ←←←← { {1,2,3,4} {5,6,7,8} }

This form of array initialisation is of limited use, as it quickly becomes unwieldy

with larger array sizes. In addition, the mechanism for iterating over an array is a

technique students will need to learn, and array initialisation is a simple way to

introduce it.

8.4.4 Variables

All variables in GRAIL are specified with the item keyword:

item name holds text

item nextmark holds student_data

item marks holds array of 100 student_data

Many options were considered for variable declarations, among them

item x is number

item x stores number

object x holds number

obj x holds number

box x holds number

Ultimately, item x holds number was chosen for several reasons. item was

chosen over obj and object because obj and object have a distinct meaning

in the object-oriented paradigm, and may cause some confusion if students

8-20

subsequently attempt the transition to an object-oriented language. box, although

it is a useful metaphor for a variable, was rejected because of the confusion that

can be caused when the metaphor breaks down (Van Someren, 1990). For

example, the translation of a=b; as "Take the value in box b and put it into box a"

implies that box b is now empty. A more accurate translation: "take a copy of the

value in box b and put that into box a" makes the metaphor much clumsier and

less clear.

holds was chosen because is implies equality rather than a container (and as

such is is more aptly used for type equivalence: type salary is number),

and holds is shorter than the other equivalent considered, stores, and hence

somewhat more useful in maintaining visual structure in the code.

Mandatory variable initialization at declaration was considered and rejected, on

the grounds that there is frequently no useful value to put in a variable at

declaration time, especially if the variable is to be read in from the keyboard or a

file. Variables are automatically initialized to the "null" value for their type (0 for

number, "" for text, false for boolean). There is no explicit initialization

syntax.

Access to the elements of an array is provided by the usual [] indexing notation:

bestmark[1] ←←←← marks[best]

Unicode subscript characters were considered for array indexing, in order to be

consistent with the subscripting notation students are familiar with from

mathematics:

bestmark1 ←←←← marksbest

However, while Unicode subscript characters exist for digits, representing variable

names as subscripts is more difficult. In addition, subscripts can be somewhat

hard to read in the case of 2 dimensional arrays, especially if the comma is not

subscripted (there is no Unicode subscript comma character):

student1,3 ←←←← marks1,3

Implementation difficulties in this case outweighed the advantage of the more

familiar syntax. This is the only case where that holds true, and where the syntax

chosen conflicts somewhat with students' prior experience.

Access to the fields of a structure is provided by the ’ or ’s operator:

item student holds student_data

8-21

student’s name ←←←← "Lee"

student’s ID ←←←← "L123456"

student’s score ←←←← 99

best ←←←← student’s name

"’s" was chosen for its English connotation of possession – students are

accustomed to seeing "Linda's book" or "Sarah's piano", and knowing that the

apostrophe and the s indicate belonging. Since a structure possesses its fields, this

syntax is role-expressive and consistent with what students already know.

The "s" was made optional in order to allow typical English usage where a noun

already ends in s. Automatic pluralisation was rejected for the reasons outlined in

section 8.4.1. 7

8.4.5 Operators

GRAIL has 17 operators at 10 levels of precedence, as shown in Table 8-1.

Precedence Operator Operand type Result

highest () any Same as operand

unary +, unary - number number

×××× ÷÷÷÷ number number

+ — number number

< > ≤≤≤≤ ≥≥≥≥ number or
text

boolean

= ≠≠≠≠ any boolean

unary not boolean boolean

and boolean boolean

or boolean boolean

lowest ←←←← any -

Table 8-1: GRAIL Operator Summary

7 Although the "’s" was chosen independently, it has been a part of various scripting languages,

including Applescript, for many years.

8-22

8.4.6 Constants

GRAIL supports the definition of constants:

constant pi is 3.15159

Since the type of a constant is immediately obvious when it is defined, it is not

necessary for the programmer to specify the type in this case. The keyword is

was chosen over holds (which is used for variable declaration) in an attempt to

highlight the difference between a constant and a variable.

8.4.7 Assignment

All assignments in GRAIL use the ← operator:

name ←←←← "Sam"

height ←←←← 1.754

mark ←←←← nextmark

Note that aggregate types (arrays and structures) can be directly assigned,

provided both variables are of the same type.

8.4.8 Control structures

GRAIL provides a single unconditional iteration control structure:

loop

count ←←←← count - 1

if count ≤≤≤≤ 0 then

exit loop

end if

factorial ←←←← factorial ×××× count

end loop

Other iterative structures were considered, including a foreach statement,

while loops, and for loops. All were ultimately excluded, on the basis that a

single, simple loop structure would be easy for students to remember, and that it

is important to provide a single, clear mechanism for each concept (see section

7.3.10).

8-23

The loop structure described above, with an exit statement which may be

positioned anywhere within the loop, may map most closely onto the way

students think, because it allows loops of three kinds:

• "while something is true, do stuff",

• "do stuff until something is true", and

• "do stuff, if something is true then stop, otherwise do more stuff".

All of the alternative loop constructs restrict students to a single loop model. It

should be noted, however, that the syntax of loops caused some problems when

the language was evaluated. This is further discussed in Chapters 9 and 10.

GRAIL also offers a single selection mechanism:

if 80 ≤≤≤≤ mark ≤≤≤≤ 100 then

grade ←←←← "distinction"

else if 0 ≤≤≤≤ mark < 50 then

 grade ←←←← "fail" | conditional alternative

otherwise

grade ←←←← "pass" | unconditional alternative

end if

A case or switch statement was also considered for inclusion, but, like other

forms of iteration, did not provide sufficient advantages to justify extending and

complicating the syntax. Such decisions must always be viewed in the context of

GRAIL's intended purpose as a short-term, throw-away, introductory language

with a deliberately limited life span.

Case statements are useful for long lists of alternatives, and are a convenient way

to introduce pattern matching to the language, but they generally have moderately

complex semantics. Inclusion of a switch or case statement would contravene rule

7.3.10 - Provide a small number of powerful, non-overlapping features, since the case

overlaps with an if statement.

8.4.9 Subroutines

GRAIL subroutines may be defined before or after the main program section (and

hence before or after any call to them). The more common approach requires

subroutines used before their declaration to have a prototype preceding their first

use. This is to allow one-pass compilation, so that the compiler always knows the

8-24

type of subroutines before they are used. There is no need for GRAIL to be

compiled using a one-pass compiler, since the resulting gain in efficiency is not

necessary for an introductory language.

Subroutines do not have access to any information outside their own scope apart

from that which is passed via parameters (i.e. there are no global variables or

lexical closures). Recursive subroutines are supported.

Subroutines may take zero or more parameters of any type(s). Each parameter is

specified using the standard item...holds... variable definition syntax. An empty

parameter list must still be specified (as empty brackets) both in the declaration

and all calls, in order to make it explicit that a function is being called. All

parameters are passed by copy, since the language does not contain pointers or

references.

Functions may return single values of any type (including structures and arrays).

There is only one exit point for any subroutine: before its end function marker.

Although there are some situations where having multiple function exit points

would be convenient, it does make functions somewhat more complex. It can be

difficult to explain to a student that a function is terminated by its return

statement, when it seems to be terminated by the end function statement.

A typical GRAIL function looks like this:

function factorial (item n holds number) returns number

item result holds number

if n≤≤≤≤1 then

result ←←←← 1

otherwise

result ←←←← n ×××× factorial(n-1)

end if

return result

end function

The return statement is defined as the last statement in the function before the end

function statement. This was intended to remove the confusion which can be

caused by multiple return points from a function, however it caused some

confusion for students during evaluation, and has subsequently been redesigned

(see Chapter 10).

8-25

A function with no parameters and no return statement looks like this:

function haiku()

write "late frost burns the bloom"

write "would a fool not let the belt"

write "restrain the body?"

end function

Formal division of subroutines into functions and procedures (as in Pascal) was

considered, but ultimately discarded as complicating the syntax unnecessarily.

Students rarely seem to make the distinction themselves, unless forced to do so by

the language they are using. It was subsequently realised, however, that the use

of the keyword function in this context is inconsistent with mathematical

functions (which always return a value), and as such may cause students some

confusion. This is further discussed in Chapter 10.

Nested functions were rejected largely due to the complexities that they introduce

to scope rules. A nested function typically inherits the scope of the enclosing

function, meaning that variables local to the enclosing function may be accessed

within the nested function. This may well be confusing to students who have just

come to grips with the idea that a function can only access its own parameters and

local variables. The difference between a nested function definition and a nested

function call is also difficult to explain to students meeting functions for the first

time.

8.4.10 I/O

All input in GRAIL is performed using the read statement:

read name, rank, serial_number

To ensure idempotence, each item is read in from a separate line. Only variables

of GRAIL's three basic types may be read in. That is, array elements and structure

fields must be read in individually, for the same reasons that compound literals

cannot be assigned directly to arrays and structures (see section 8.4.3):

item student holds student_data

read student’s name, student’s ID, student’s mark

The elided form where the structure name is implicit after the first use was also

considered:

read student’s name, ID, mark

8-26

however, this was rejected on the grounds of ambiguity. A student may

legitimately use temporary variables with the same names as structure fields (eg.

name, ID , mark), so eliding the structure name could lead to confusion and

ambiguous code.

Output is performed with the write statement:

write name, rank, serial_number

Once again, each item is written to a separate line of the output. This is to remain

consistent with input – since text is read in to the end of a line, in order to be

idempotent.

GRAIL does not contain file I/O. Several variations on file I/O were considered

for inclusion, such as the addition of from, to, and file keywords, leading to

the following syntax:

read name, rank, serial_number from file "data"

write serial_number, name, rank to file "outfile"

However, this raises numerous questions. Are files automatically opened, or is

there further syntax needed to open them (and hence to close them)? If files are

automatically opened, consistency demands that they should also be

automatically closed. If they are automatically closed, it is not clear precisely

when they should be closed. At the end of the program? When the end of the file

is reached for reading, and after the last write statement for writing? What

mode should be default for writing to a file? Append or overwrite? Overall, the

complexity of file I/O outweighs the benefits of introducing it to a simple, short-

term language such as GRAIL.

8.5 Summary

The design theory described in Chapter 7 has been applied here to create GRAIL.

Although it provides all the fundamentals of programming in the commonest

paradigm, GRAIL also departs in significant ways from existing programming

languages. It is smaller, its semantics are simpler, and its syntax is grounded in

the students' prior experience.

The success of the design process and the resulting language cannot be

determined without testing and evaluation with students who are new to

programming. To that end, the next chapter describes the evaluation and testing

process, together with the results of the testing.

9-1

9 Testing and Evaluation

The evaluation process for a programming language typically involves years of

experience with the language in its intended environment, be it industrial

software engineering, computer science education, research computing, or

recreational programming (Allen, Grant, & Smith, 1996; Brusilovsky et al, 1994;

Collins & Fung, 1999). Formal evaluation programmes are few and far between,

and most evidence gathered is anecdotal in nature. In an educational setting, the

demands of courses and curricula make it difficult, if not impossible, to compare

different languages in the same course, and different courses generally have

sufficiently different curricula to make language comparisons meaningless.

Financial constraints limit opportunities for formal comparisons in industry.

Where comparisons can be made between courses or projects, the number of

different parts of the course which vary between the different settings frequently

obscure the results.

It is has been more common to compare single attributes, for example single

language constructs, rather than whole languages (Soloway, Bonar, & Ehrlich,

1989; Sime, Green, & Guest, 1973). This approach is useful to the field of language

design, as it gives firm indication of the value and impact of individual features,

where comparison of entire languages does not easily lend itself to analysis of

particular features within the languages. However, this technique leaves the

question of which language is best for a particular task unanswered, and the

interaction between language features is often neglected.

As Chapter 4 illustrates, the question of which programming language to use for

introductory programming is not easily settled. Although much discussion has

taken place in computer science literature (for example, Allen, Grant, & Smith,

1996; Budd & Pandey, 1995; Conway, 1993), to date there has been little or no

comparative formal evaluation of student interaction with introductory languages.

To some extent, comparing disparate languages does not answer the larger

question of which language is better from a pedagogical perspective, but formal

comparison can answer smaller questions.

Psychologists term our beliefs about the way we think metacognitive knowledge

(Flavell, 1979). There is a large body of metacognitive knowledge about

programming and the impact of programming languages on learning, and on

programming style (Blackwell, 1996). However, there is little conclusive evidence

9-2

that the choice of language actually makes a difference to the interaction that takes

place in an introductory setting, and hence to the quality of learning. The

evaluation of GRAIL provides some evidence that choice of language is important,

and that it does impact directly on the types of interaction taking place in

introductory programming classes.

9.1 Questions

The testing and evaluation of GRAIL was designed to answer the following

questions:

1) Are the number and type of errors students make when learning to program

affected by the programming language used? Do students make more, less, or

the same number of errors using GRAIL compared with some other language?

2) Are syntax and logic errors correlated? While correlation does not imply

causality, it may hence be worthwhile aiming to reduce the number of syntax

errors students make in order to make learning to program easier, and to allow

students to focus on solving the problem rather than battling the syntax?

3) Has the design of GRAIL been successful in minimising the cognitive overhead

for students who have no prior programming experience? Although this

question is difficult to settle directly, it is closely tied to Question 1. The more

details students have to remember, and the more cognitive overhead they must

cope with in order to learn a language, the more slips and mistakes they are

likely to make while programming. If students make less errors in GRAIL,

presumably the cognitive overhead of GRAIL is lower than a language in

which students make more errors.

4) Which parts of GRAIL did students have trouble with, and hence need to be

redesigned? Which parts of GRAIL worked as intended? As noted in Chapter

2, usability can only be definitively tested using contact with real users. Using

careful design, pedagogical and psychological theory, and learning from the

successes and failures of other programming languages, GRAIL was designed

to be as simple and easy to learn as possible. Without contact with students

with no programming experience, however, there is no way of knowing

whether the design technique was effective, and how usable GRAIL really is.

Ultimately, all of the above questions explore the overall question: Does it matter

which programming language is used for introductory programming courses?

9-3

9.2 Testing

9.2.1 Outline

To answer the questions outlined in section 9.1, GRAIL needed to be compared

with another language, in a standardised environment, using students who had

never programmed before.

9.2.2 Choose a language for comparison

Questions 1 and 2 above require that GRAIL should be compared with another

language, in order to gather data on relative error rates in two different languages.

The following sections discuss the issues involved in choosing a language to

compare with GRAIL.

9.2.2.1 Issues

GRAIL was designed for students learning programming for the first time, who

have no prior programming experience. To examine error rates among a group of

such students, GRAIL is best compared with a language that was also designed for

students with no prior programming experience. A language with very different

syntax and semantics from GRAIL could be expected to produce the most

conclusive results, and hence the strongest indication of whether syntax and

semantics do make a difference.

The choice of language for comparison purposes will only impact (if at all) on the

scale of the difference.

9.2.2.2 Alternatives

Languages considered for comparison with GRAIL included Turing, Pascal, and

LOGO. All three languages were designed for teaching programming, and hence

required no prior knowledge of programming. The resources involved in teaching

the course and analysing the results were considerable, and there was a limited

number of student volunteers to participate in the programme. As a result, it was

only possible to compare GRAIL with one other language. As the most

syntactically and semantically different from GRAIL, LOGO was chosen, in order

to achieve the most definitive results possible.

LOGO was designed to help children learn, to stimulate their mental development

and creativity (Papert, 1993). LOGO has the clear visual feedback of the turtle,

9-4

which not only makes it very obvious what programs are doing (especially what

they are doing wrong), but also provides a motivational lift for students, because it

is fun to use. LOGO is a very different language syntactically and semantically

from GRAIL, despite having some design aims in common.

9.2.3 A standard interface

LOGO is an interactive language that is typically used by typing one line at a time

and receiving immediate feedback from the interpreter. GRAIL is a compiled

language in which whole programs must be written before the compiler is

invoked. In order to minimise the number of variable elements in the evaluation,

it was desirable to create an interface and programming environment that was

standard for both languages.

Rather than using an existing text editor with a wide range of features, an interface

was designed with minimal features and a very simple layout. The interface

contains standard text and file features (cut, copy, paste, open a file, save a file,

save as, new file, and quit), and a help function. In the lower right hand corner of

the screen is a large button marked "RUN" that runs the program. The user

interface was built on DECStation 5000 machines. Stickers with pictures of

operators on them were attached to the keyboard to allow students to insert the

non-ascii characters in GRAIL using labelled function keys.

Running code that contained syntax errors in either language caused a small

image of a bug to appear next to the appropriate lines of code. Clicking on each

bug produced the relevant error message.

Code with no syntax errors was run in an input/output window, which showed

any textual output from the program, and allowed text to be input from the

keyboard when necessary. This window also contained basic text editing facilities.

In addition, code that made use of the LOGO turtle caused a graphics window to

be displayed, where the turtle could be seen.

No sophisticated error processing was included in the GRAIL compiler, since the

LOGO interpreter's error messages were rudimentary. Including more intelligent

error checking and reporting would have increased the number of variables in the

test, and possibly skewed the results.

9-5

9.2.4 Course Design

The syllabus was chosen to encourage learning of the basic concepts of imperative

programming, such as algorithms, variables, selection, iteration, primitive data

types, simple data structures, and functions.

The teaching materials for both groups were made as similar as possible. The

major problems set in each language were the same, with some small differences

in initial programs - the LOGO groups, for example, initially made use of the

turtle to draw simple shapes. The problems tackled included simple examples of

I/O (reading in a name such as "Fred", and printing out "hello Fred"), a simple

calculation of the age of a person based on the month and year of birth, a banking

program to keep track of savings and stop when the desired target is reached, up

to a student database that records students names, id numbers and marks, and

prints out the details of the top student in the class.

The short time frame (8 hours per group) necessitated a mixed lecture/practical

class style, where a topic was introduced, some examples were covered on the

board involving the whole class, and they were then encouraged to test out the

theory by coding something on their own. The notes are included in Appendices

B & C.

9.2.5 Student recruitment

Students beginning the Monash University CSC1011 Introduction to Programming

course were offered the opportunity to take an 8 hour introductory programming

course (entitled the Jump Start Programme) before the start of First Semester. All

students were surveyed on their prior computing experience, and any form of

programming experience, including macro languages in applications such as

spreadsheets, excluded students from the programme. Students who volunteered

and had no prior programming experience were split randomly into four groups,

each containing 6 or 7 students. Two groups were taught GRAIL, the other two

LOGO. In total, 13 students completed the GRAIL course and 13 students

completed the LOGO course.

9.2.6 Data collection

Each time the students pressed "RUN", a copy of their code was saved. Fifty-five

thousand lines of code were collected. In addition, the students were observed

during the classes, and qualitative observations were recorded. For example, how

9-6

much the students experimented with the language, writing programs that were

not set as exercises in class.

9.3 Analysis

9.3.1 Analysis of code

The method of data collection, collecting a copy of every program each time it was

run, meant that there were many duplicate programs collected, due to students

running the code multiple times to try different inputs. In addition, many errors

were run multiple times – sometimes while other errors were fixed, and

sometimes due to failed attempts to solve the problem. In order to analyse the

code, duplicate programs were removed, and errors were only counted once,

regardless of how many times the program was run/compiled before the problem

was solved. However, if an error was removed and was later reintroduced, the

reintroduction was counted as a new error.

Due to the difficulty of detecting logic errors automatically, analysis of the code

was done by visual inspection.

Two broad categories were used in the analysis of the code - syntax and logic

errors. Errors classified as syntax errors were generally simple, language-based

errors that did not indicate a serious misunderstanding, an incorrect algorithm, or

an incorrect translation from algorithm to code. A list of the most common syntax

errors for LOGO and GRAIL can be found in tables 9.1 and 9.2. Syntax errors

included:

• typographical errors

• use of incorrect keywords (eg “end” instead of “exit” in GRAIL, “loop”

instead of “repeat” in LOGO)

• incorrect punctuation (eg ‘"‘ instead of ‘:‘ in LOGO, or a missing “,” in a

“write” statement in GRAIL)

• missing keywords (eg missing “end” statements in both languages)

• incorrect operators

• missing quotes or brackets

9-7

Errors classified as logic errors generally involved a flawed algorithm. These

included:

• failure to increment a loop counter

• accessing an array position that doesn’t exist (ie violating the bounds of an

array)

• prompting for the user to enter a value after the value has been read eg

read myNumber

write "please enter my number"

• using the wrong variable

• incrementing a loop counter in the wrong place (ie outside the loop, or

before the loop counter is used for the first time)

missing end statements

wrong keyword (eg end instead of exit)

missing comma in write (eg write x y)

typing errors

undeclared variables

missing "’s" (eg read class[index] name,

rather than read class[index]’s name)

missing quotes round text

Table 9.1 Common syntax errors in GRAIL

incorrect or missing " or :

bracketing errors (missing brackets, wrong sort of bracket, etc)

incorrect keyword (eg setitem and item interchanged)

strings missing enclosing square brackets

incorrect list accessing syntax

(eg pr :mylist, or pr :index :mylist, rather than pr item

:x :mylist)

mismatch between function definition and call (eg call or

definition missing parameters)

poorly constructed compound statement

(eg pr item :x triple :mylist, rather than pr (triple item

:x :mylist))

9-8

typing errors (mistyped variable names, etc)

: or " used inappropriately (eg make "output 2*:n, instead of

output 2*:n or :square where square is a function name, or

on a number, eg :1)

print broken over multiple lines (eg (pr [......]

:y[......] :x))

variable printed in [], (eg pr [sum] instead of pr :sum)

problems with ifelse (eg if month<3 [....] ifelse

[....] instead of ifelse month<3 [....] [...], or

missing argument to ifelse)

= instead of make

Table 9.2 Common syntax errors in LOGO

In addition to the data collected on error rates, mean-time-to-completion was

analysed for both groups, in an attempt to determine whether problems were

solved faster in one language than the other. In practice, however, these results

proved unreliable, due to a number of interfering factors:

• Power failures and machine breakdowns during some classes artificially

inflated completion times.

• Due to the format of the classes, where tutorials were interspersed with

coding time, it was not always possible to tell whether a student was

programming or listening to the tutor.

• Many exercises were carried over from one tutorial to the next, so it was not

possible to tell how long students spent working on these problems in their

own time.

9.3.2 Analysis of results

Error rates in GRAIL were significantly different from those in LOGO, for both

syntax and logic errors, as shown in tables 9.1 and 9.2.

9-9

Syntax Errors

(per student)
LOGO GRAIL

Mean 31.08 13.62

Standard Deviation 8.33 7.98

Number of Students 13 13

Table 9.3 Syntax Errors per student

Logic Errors
(per student)

LOGO GRAIL

Mean 17.77 9.54

Standard Deviation 7.049 5.40

Number of Students 13 13

Table 9.4 Logic Errors per student

The frequency distributions in Figures 9.1 and 9.2 show that the distributions are,

as expected, roughly normally distributed (taking into account the small sample

size). For both syntax and logic errors, the distributions for GRAIL are clearly

different to those for LOGO, with students making more errors in LOGO than in

GRAIL. Figures 9.1 and 9.2 show that the error frequencies for the GRAIL groups

were substantially lower than those for the LOGO groups. The mean number of

syntax errors over the course of the evaluation for the LOGO group was 31.08,

with a standard deviation of 8.33, versus a mean of 13.62 and standard deviation

of 7.98 for GRAIL. Logic errors gave a less dramatic result, but still significant,

with LOGO students making 17.77 errors on average (standard deviation 7.05),

versus 9.54 (standard deviation 5.39) for GRAIL.

9-10

Frequency of Syntax Errors

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 10 20 30 40 50 60

Number of Errors (N)

N
um

be
r o

f S
tu

de
nt

s
m

ak
in

g
N

 e
rr

or
s LOGO

GRAIL

Figure 9.1 Frequency Distribution of Syntax Errors

Frequency of Logic Errors

0
1
2
3
4
5
6
7
8

0 10 20 30 40 50 60

Number of Errors (N)

N
um

be
r o

f S
tu

de
nt

s
m

ak
in

g
N

 e
rr

or
s LOGO

GRAIL

Figure 9.2 Frequency Distribution of Logic Errors

 An independent t-test shows that the two groups are significantly different for

both syntax errors (t = 5.24, df = 24, p < 0.01) and logic errors (t = 3.21, df = 24, p

< 0.01). These results support the hypothesis that the choice of language, or at

least the type of language chosen, does make a difference to the type and

frequency of errors made by novice programmers.

9-11

9.3.2.1 Correlation between syntax and logic error rates

The mean error rates for logic and syntax errors in the two groups suggest a link

between the number of syntax errors made and the likely number of logic errors.

The correlation coefficient (R=0.56, df=24, p<0.01) suggests that syntax and logic

errors are moderately correlated. This correlation could be due to student

differences, as struggling students are more likely to make both types of errors. It

could also mean that syntax errors interfere with problem solving and

programming in such a way that an increase in syntax errors makes logic errors

more likely. Although no firm conclusions can be drawn from this, the results

suggest that minimising syntax errors may have an impact on logic errors, and

may facilitate student learning.

Correlation between syntax errors and
logic errors

0

5

10

15
20

25

30

35

0 10 20 30 40 50

number of syntax errors

nu
m

be
r

of
 lo

gi
c

er
ro

rs

Figure 9.3 Correlation between syntax and logic errors

9.3.3 Observed qualitative results

9.3.3.1 Willingness to experiment

Observation of the students during the evaluation process showed that students

using GRAIL were more likely to experiment with the language outside the

bounds of the course material. Two students from the GRAIL groups (one from

each group) also wrote substantial programs in their own time, despite having no

access to the software outside class times. One student wrote a database to store

friends' phone numbers, the other wrote an extended version of the student marks

9-12

database that printed a different message according to the range in which each

student's mark fell, and allowed the user the choice of looking at all student

details, selected students or just the best student. No students from the LOGO

groups wrote programs in their own time, and although the LOGO groups did

experiment somewhat with the turtle, when encouraged to do so, no substantial

programs outside the syllabus were written in LOGO.

9.3.3.2 Specific errors

Some features of both languages caused students problems. GRAIL's closeness to

English or natural language was expected to cause some problems when students

slipped into English rather than code, or accidentally typed a grammatically

correct sentence in English, rather than a syntactically correct piece of GRAIL

code. For example, the following errors did appear, but surprisingly infrequently:

item x is a number, instead of item x is number, or pluralisation of

types, as in: item x is array of 10 numbers .

Pluralisation of types could be expected to occur where an aggregate variable,

such as an array, is declared, as the natural language of the declaration might lead

the students to think in English rather than code – "10 numbers" makes more

sense in this context than "10 number". However, studies have shown that

natural language errors are likely to occur regardless of how close the

programming language is to natural language (Putnam, 1986; Bruckman &

Edwards, 1999). Only 3 students incorrectly pluralised types in array declarations,

and each student only made this type of mistake once. Similarly, only two

students added an extraneous article to variable declarations, and neither student

repeated the error.

Case insensitivity also proved to be a minor issue, with only one student using

incorrect capitalisation. Once again the student never repeated the error.

Variable declaration may happen anywhere in a LOGO program. This caused

students some problems when writing loops that processed arrays – some

students declared their arrays inside the loop, causing the program to fail, since

the variable was replaced by a new variable each time through the loop. The

GRAIL syntax for loops caused more iterative errors, where students iterated 9

times instead of 10. This is further discussed in Chapter 10.

9-13

Operators caused the most errors overall in LOGO: confusion between the " and

: operators, and mistakes involving placement of brackets, or use of the wrong

sort of bracket, were some of the most common errors.

The GRAIL function syntax caused some problems, as the similarity between

"return" and "returns" – caused confusion, with students interchanging the

two and not understanding subsequent syntax errors. The function syntax is

redesigned in Chapter 10.

9.4 Discussion of results

9.4.1 Cognitive Dimensions of GRAIL

Chapter 5 gives a description of 6 cognitive dimensions which are relevant to

introductory programming languages, and discusses existing programming

languages in relation to those dimensions. The results presented here allow the

analysis of GRAIL with respect to those dimensions. The optimal values for an

introductory programming language used for teaching novices are:

• Closeness of mapping high

• Consistency high

• Diffuseness medium-high

• Error-proneness low

• Hard mental operations low

• Role-expressiveness high

The results from the Jump Start Programme suggest that GRAIL scores well in

closeness of mapping and consistency, and is sufficiently verbose to allow high

role-expressiveness, but not so verbose as to obscure the structure of the code.

Error-proneness and hard mental operations are low, although error-proneness

could be lower if some problem constructs were redesigned (see Chapter 10).

The results from the Jump Start Programme suggest that GRAIL has achieved a

high closeness of mapping. Students easily translated their algorithms into

GRAIL code, and most GRAIL constructs seemed to fit naturally into the way

students were trying to solve problems. Consistency is also high in GRAIL. This

is partly achieved by only the use of a single construct to represent each individual

9-14

concept. Syntactic consistency is also assisted by the size and simplicity of the

language.

Role expressiveness is high, which is again assisted by the small number of

obvious constructs (and the design policy of leaving out any construct which does

not have a single, obvious interpretation). Hard mental operations are not present

in GRAIL, and error proneness is generally low. Some error-prone syntactic

elements, such as the "returns" and "return" keywords, could be improved by

redesigning these parts of the language (see Chapter 10).

9.4.2 Summary of findings

To summarise, the four questions raised at the beginning of this chapter are

discussed below.

1) Are the number and type of errors students make when learning to program

affected by the programming language used? The results presented in this

chapter suggest that language does affect the number and type of errors that

students make. Students learning GRAIL made less syntax and logic errors

than students learning LOGO.

2) Are syntax and logic errors correlated? Syntax and logic errors are moderately

correlated. This finding suggests further research would be valuable. The

avenues of research that arise from this part of the study are further discussed

in Chapter 10.

3) Has the design of GRAIL been successful in minimising the cognitive overhead

for students who have no prior programming experience? The results suggest

that cognitive overhead has been reduced as a result of less errors being caused

by the syntax and semantics of the language. However, there is still scope for

improvements in the language to reduce the overhead even further. This is

further discussed in the next chapter.

4) Which parts of GRAIL did students have trouble with, and hence need to be

redesigned? Which parts of GRAIL worked as intended? The results of the

evaluation show that some parts of GRAIL need to be redesigned. At the same

time, many parts of the language worked as intended, combining to reduce the

number of errors students made. Those sections of GRAIL that have been

redesigned are discussed in the next chapter.

9-15

9.4.3 Discussion

Does it matter that programming language is used for introductory programming

courses? The original hypothesis, that a programming language is a type of user

interface, and hence that usability principles apply to the design of a

programming language in the same way as they apply to the design of any other

user interface, suggests that the choice of programming language is, indeed,

important. Usability demonstrably impacts on the productivity, efficiency, and

satisfaction with which users can carry out their tasks. Different user interfaces

are suited to different types of activity, and to different types of user.

The results presented in this thesis suggest that the design of a programming

language based on usability principles can lead to a language that facilitates

increased productivity, efficiency, and user satisfaction by decreasing the

incidence of unnecessary and frustrating errors. This suggests that the choice of

programming language for introductory programming courses can have a

considerable impact on the number and type of errors that students make in the

course of learning to program.

These findings support the conclusion that programming languages can usefully

be regarded as user interfaces, and that they are subject to the principles of

usability. This, in turn, supports the thesis that the language used for introductory

programming education is important, and can have a significant impact on

student learning and motivation.

10-1

10 Conclusions and Further Work

10.1 Redesign of GRAIL

10.1.1 Problem features

Some features of GRAIL were clearly shown to be problematic during the

evaluation process. This section discusses possibilities for redesign of these

features which may solve the problems discovered during testing.

The testing process showed that some students confused the keywords return

and returns.

function factorial (item n is number) returns number

...

return result

end function

This syntax has since been redesigned, so that the return is now a part of the end

function statement, like this:

function factorial (item n is number) returns number

...

end function returning result

This new syntax is clearer and may be less error prone. Students tended to

confuse the original version, due to the similarity between the "return" and

"returns" keywords. Although it seemed clear during the design phase that

"function f returns number" and "return result" were unambiguous

due to the grammatical difference in the English expressions – "returns

number" is a descriptive term, while "return number" is an imperative

statement requiring action – it turns out that the visual distinction between the

two terms is not sufficient to make the functional difference clear to the students.

There is an additional benefit to the new syntax, as it changes the affordance of the

return statement, and makes it clear that there is only one way to exit the function

– the returning statement cannot be placed anywhere inside the function, it is

tied to the end function marker. This is more likely to be effective than simply

mandating that the return statement must be the last line of the function body

without providing any visual or semantic cues to apprise or remind students of

this rule.

10-2

The loop structure also bears closer examination. Many students confused the

end loop and exit loop statements, and it was not uncommon for students to

execute loops over indices from 1 to 9 where they intended to go from 1 to 10

(due to incorrect positioning of the index increment, or use of an erroneous

operator, such as < rather than ≤≤≤≤.

In retrospect, the loop was designed around an overly machine-centric concept.

When using loops, students most often want to iterate over some list, such as an

array of values. To make the loop more problem-based, rather than machine-

based, it would seem appropriate to alter the loop construct to be more like a

"foreach" statement, which takes a list of values and executes the loop once for

each value. For example:

foreach value in (1..10) do

sum ←←←← sum + value

write "progressive sum is", sum

end foreach

This also removes some of the complexity of the loop construct, as it is clear that in

the above example everything inside the loop happens once for each item in the

brackets, so there is no confusion about when the loop is terminated based on the

condition (ie does the loop terminate as soon as the exit condition is true, or only

when the condition is true at the position in the loop where it is tested).

One drawback with this approach is that it eliminates the possibility of

terminating the loop based on input. For example, the following code is difficult

to achieve with a foreach statement:

loop

read word

if word = "quit" then

exit loop

else

process(word)

end if

end loop

A common error identified during evaluation was the elision of end statements,

such as end program, end loop, and end if. This suggests that the use of

indentation for block specification might cause less syntax errors, although more

investigation is needed to show whether there is a subsequent increase in more

pernicious blocking errors.

10-3

For example:

if x<y then

write "returning x"

result ←←←← x

else

write "returning y"

result ←←←← y

where result will be set to y regardless of the value of x.

Another prevalent error was the lack of commas in write statements. This could

easily be rectified by using white space to separate parameters to I/O operators.

For example:

write x y z rather than write x,y,z

This may cause some confusion, however, in the case of structures, where there

are already spaces in the specification of fields:

write student’s name student’s id student’s mark

The alternate version with commas is probably clearer:

write student’s name, student’s id, student’s mark

Another alternative might be to allow only one value to be printed out per write

statement. This is somewhat cumbersome, but arguably more consistent with the

nature of the write statement, which only prints one value per line. For

consistency, this would necessitate changing the read statement to behave in the

same way – only allowing one value to be read in per read. It is not clear what the

ideal solution is in this case – user testing of the alternatives is required to settle

this question.

10.1.2 Successful features

As noted in Chapter 9, the closeness of GRAIL to English caused very few

problems, and seems to have enhanced the role-expressiveness of the language

considerably. There was considerably less confusion in GRAIL between operators

than there was in LOGO, which suggests that the choice of operators in GRAIL

was effective. Unicode characters were used without difficulty.

Line-based strings mapped closely onto the kinds of operations students wanted

to carry out during the course – prompting for input was by far the most common

10-4

use of strings. Other uses for strings included storing students' names, or the titles

and artists of CDs in their collection. Since these required strings to be read in

containing spaces, line-based strings were more convenient than the more

common model, where strings are read in up to the first whitespace character.

Although that requirement can be handled using a separate function for reading in

a line of text, the GRAIL model is simpler, in that it requires only a single input

function for all types of input.

Idempotent input and output proved to be an effective tool. Apart from the

problems with commas mentioned in the previous section, students had no

problems with I/O in GRAIL. Values were read in and printed out in predictable

ways, since the I/O process does not change the values, and behaves consistently

between input and output. This provides further confirmation of the value of line-

based strings, since, without them, fully idempotent I/O would be more

complicated.

The single, arbitrary precision numeric type, number, was also effective. Students

seemed to find it comprehensible and predictable. Similarly, the assignment

operator, ←←←← worked as anticipated. There was no evidence of the usual

misconceptions which surround assignment statements (as discussed in section

7.4), nor any confusion between the equality operator (=) and the assignment

operator.

The lack of a switch statement in GRAIL did not prove to be a significant

drawback during the evaluation process, although further evaluation with a

longer course would be useful.

10.2 Redesign of the Evaluation process

Despite the small number of students involved in the study, the results from the

evaluation showed strong indications that error type and frequency are affected

by choice of programming language. The study was of a type that has not

previously been attempted, and the results suggest that further research of this

type would be of value. The choice of LOGO as the comparative language had

both positive and negative implications – the high degree of difference between

the syntax of LOGO and GRAIL accentuated the results and made it clear that

choice of language does impact on error rates and hence is also likely to impact on

learning. Further study is warranted with a language closer in nature to GRAIL,

perhaps Pascal, and also with a more contemporary language, such as Java.

10-5

The normalisation of programming environments for GRAIL and LOGO, which

ensured that environmental factors did not contribute to differences in error rates

and interaction with the language, also may have had mixed implications. While

it laid the focus of the study clearly on language rather than environment issues, it

may have counted against LOGO to some degree in the final results, as LOGO was

designed as an interactive interpreted language where immediate feedback for

simple statements is possible. Typical use of most, if not all LOGO environments

is interactive, except in the case of procedures, or to statements, which must first

be defined, and subsequently called, before the interpreter can proceed to deal

with them. However, since LOGO is intended to be used to write many small

procedures (Papert, 1993), the impact of the environment may not have been

significant in this sense.

The turtle graphics component of LOGO programs was retained for the purposes

of evaluation, despite the extra variable this introduced into the study. The

appealing nature of the turtle, together with the visible evidence of algorithmic

correctness (or lack thereof) is an important part of programming in LOGO, and

could not be excluded without impacting on the usable and motivational nature of

the language. As it has been suggested that entertainment value is a valuable tool

for teaching programming, turtle graphics provide an extra difference from

GRAIL that is worth investigating. As it was not possible to differentiate the

impact of the turtle from the impact of syntax and semantics, this should perhaps

have been studied in isolation, and could be a valuable direction for future study.

Implementation issues impacted on the evaluation process more than anticipated.

The compilation speed of GRAIL programs was somewhat slower than the

interpretation speed for LOGO. This may have led to students being more

cautious before compiling a GRAIL program than when using LOGO, although

such a response was not immediately apparent. The fact that, during the analysis,

each error was only counted the first time it appeared in the code, no matter how

many times the program was compiled containing that error, should have

minimised the impact of this problem.

10.2.1 Progressive evaluation

Given time and resources, the language would, like any software, probably be

improved by more testing and revision, especially earlier in the design phase.

Repeated testing of the language using small groups of users with no computing

10-6

experience would probably have resulted in a language with higher usability.

Strict application of usability engineering to the design of a programming

language could produce interesting results.

10.3 Further work

10.3.1 Further evaluation

While the evaluation was effective and informative, the results do not lend

themselves to the evaluation of the precise impact of individual language

constructs. In order to determine the effectiveness of each distinct element of the

language, more studies would be required comparing GRAIL with itself, but with

minor changes. For example, a study of the original version of GRAIL that used a

separate return statement, with the new version that uses the returning

statement tied to the end function statement, would shed light on the impact

of this single change to the language. A sequence of such studies, each comparing

single elements of the language, could yield considerable information, and could

have a significant impact on the design of future programming languages, both

introductory and industrial.

Comparison with different languages would also be of interest, particularly

languages more similar to GRAIL than LOGO is, such as Pascal or Turing.

The work in this thesis leads naturally into a similar empirical evaluation of

integrated development environments, to determine the impact of the

development environment on learning to program, and also on programming in

general.

10.3.2 Implications for software engineering

Given that programming language impacts on error rates for novice programmers,

what are the implications for software engineering as a whole? There is scope to

examine whether the results also hold for expert programmers. If so, there are

ramifications for program correctness, reliability, and robustness, as well as

programmer efficiency and productivity. If the language used by an expert

programmer makes a difference to the number of errors and bugs in the code, then

the choice of language for software development is critical, and further empirical

analysis of programming languages for experts is necessary to determine which

languages are truly more error prone.

10-7

10.4 Contributions of this thesis

10.4.1 Programming languages as user interfaces

By treating programming languages as user interfaces, this thesis has successfully

applied the considerable body of work on the usability of user interfaces to the

study of introductory programming languages.

10.4.2 Usability analysis of programming languages

The application of usability principles to the analysis of programming languages

used for introductory programming education has a number of important uses.

Firstly, it provides insight into some of the reasons that programming is so

difficult for some students to learn. Secondly, it gives educators a framework on

which to build their courses, so as best to handle the usability problems in

programming languages, as well as a greater insight into programming from the

novice perspective. Thirdly, it leads to informed selection of programming

languages for introductory courses, and, finally, it is a basis for the design of more

usable programming languages for all purposes.

10.4.3 Design framework for introductory programming languages

Using the usability analysis as a basis, this thesis presents a framework for the

design of introductory programming languages. The framework is a set of design

principles that describe the usability considerations for introductory languages,

giving reasons for each principle.

10.4.4 A new introductory programming language

Based on the design framework, this thesis describes the design of a new

introductory programming language, GRAIL, designed to facilitate the teaching

and learning of introductory programming.

10.4.5 Empirical evaluation of programming languages

An important contribution of this thesis is the empirical evaluation of two

programming languages used for introductory programming. This evaluation

provides the first strong evidence that choice of programming language for

introductory programming does impact on student learning. The evaluation also

provides evidence that syntax errors are correlated with logic errors - in other

10-8

words that syntax errors may impede students' problem solving and coding

abilities. This provides support for educators responsible for choosing languages

for use in introductory programming courses to give usability and pedagogical

issues a higher priority than has been feasible in the past.

10.5 Conclusion

Despite the obvious advantages of an introductory language specifically designed

to facilitate learning, existing "teaching languages" struggle to achieve sufficient

pedagogical advantage to overcome the philosophical, political, financial and

psychological arguments against them. These arguments are generally based on

the ultimate usefulness of industry-relevant languages, on student perceptions of

(and demand for) that usefulness, and on teacher familiarity with "mainstream"

languages.

GRAIL is yet another attempt to overcome these barriers, but it has the advantage

of being extremely simple and deliberately "throw away" (reducing the force of

the Industry Relevance From Day One argument).

Although providing all the fundamentals of programming in the commonest

paradigm, GRAIL also departs in significant ways from existing programming

languages. It is smaller, its semantics are simpler, and its syntax is grounded in

the students' prior experience.

This thesis presents strong evidence of the pedagogical advantages of teaching a

language which facilitates learning, and does not impede novice programmers

with extraneous details, poor syntax, and overly complex and dangerous

semantics. This evidence puts educators in a position to make more informed

choices about the languages they use for introductory programming, and the way

they use them.

Bibliography

Abelson H., Dybvig R.K., Haynes C.T., Rozas G.J., Adams N.I. IV, Friedman D.P.,

Kohlbecker E.,Steele G.L. Jr., Bartley D.H., Halstead R., Oxley D., Sussman

G.J., Brooks G., Hanson C., Pitman K.M., & Wand M. (1998) Revised^5

Report on the Algorithmic Language, Journal of Higher-Order and Symbolic

Computation 11 (1):7-105, August.

Allen, R.K., Grant, Douglas D., & Smith, R. (1996) Using Ada as the first

Programming language: A Retrospective. In Proceedings of Software

Engineering: Education & Practice, 1996 (SE:E&P’96), IEEE Computer

Society Press.

Arnold, Ken, & Gosling, James (1998) The Java programming language. 2nd ed.

Addison-Wesley, Reading, Mass. USA.

Ausubel, D. (1963) The Psychology of Meaningful Verbal Learning, Grune & Stratton.

Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis, A.J.,

Rutishauser, H., Samuelson, K., Vauquois, B., Wegstein, J.H., van

Wijngaarden, A., Woodger, M. (1960) Report on the Algorithmic Language

ALGOL 60, Peter Naur Ed., Communications of the ACM. 3(5), pages 299-

314, May.

Barnes, J.G.P. (1994) Programming in Ada, Addison- Wesley.

Bellamy, C. J. (1989) Computer programming in FORTRAN 77. Longman Cheshire,

Melbourne.

Ben-Ari, Mordechai, (1996) Structure Exits, Not Loops. In SIGCSE Bulletin, 28(3),

September.

Blackwell, A.F. (1996). Metacognitive Theories of Visual Programming: What do we

think we are doing? In Proceedings IEEE Symposium on Visual Languages,

pp. 240-246.

Bonar, J. & Soloway, E. (1985) Preprogramming Knowledge: A Major Source of

Misconceptions in Novice Programmers. In Human-Computer Interaction,

1(2):133-161.

Booch, Grady (1991) Object Oriented Design with Applications,

Benjamin/Cummings, USA.

Brilliant, S. S. & Wiseman, T. R. (1996) The First Programming Paradigm and

Language Dilemma, Proceedings of the 27th SIGCSE Technical Symposium

on Computer Science Education, March, pp338-342.

Brooks, Ruven (1977) Towards a theory of the cognitive processes in computer

programming. In International Journal of Man-Machine Studies 1977, 9, pp

737-751.

Bruckman, Amy & Edwards, Elizabeth (1999) Should We Leverage Natural-Language

Knowledge? An Analysis of User Errors in a Natural-Language-Style

Programming Language. In Proceedings Computer Human Interaction 1999

(CHI'99), Pittsburgh, USA, May.

Brusilovsky, P., Calabrese, E., Hvorecky, E., Kouchnirenko, A., & Miller, P. (1997)

Mini-languages: A Way to Learn Programming Principles. In Education and

Information Technologies, 2(1): 65-83.

Brusilovsky, P., Kouchnirenko A., Miller P., Tomek I. (1994) Teaching programming

to novices: A review of approaches and tools. In T.Ottman, I.Tomek (eds.)

Proc.of ED-MEDIA'94 – World Conference on Educational Multimedia and

Hypermedia. Vancouver, Canada, June 25-30, pp 103-110.

Budd,T. A. & Pandey, R. K. (1995) Never Mind the Paradigm, What About

Multiparadigm Languages? SIGCSE Bulletin, 27(2), June 1995, pp 25-30.

Clocksin, W.F. & Mellish, C.S. (1981) Programming in Prolog, Springer-Verlag.

Collins, Trevor D., & Fung, Pat (1999) Cognitive Modelling for Psychology Students:

The Evaluation of a Pragmatic Approach to Computer Programming for Non-

Programmers. In G Cummings, T Okamoto and Louis Gomez (eds),

Proceedings of the 7th International Conference on Computers in Education

(ICCE'99), Chiba, Japan, November, IOS Press, Volume 1, pp 216-223.

Colmerauer, Alain, & Roussel, Philippe (1996) The Birth of Prolog. In History of

Programming Languages – II, Thomas J. Bergin Jr and Richard G. Gibson Jr

(Eds), ACM Press, New York.

Constantine, Larry L. (1995) Constantine on Peopleware. Yourdon Press,

Eaglewood Cliffs, New Jersey, USA.

Conway, D. (1993a) Criteria and Consideration in the Selection of a First Programming

Language, Technical Report 93/192, Department of Computer Science,

Monash University, December.

Conway, D. M. (1998) An algorithmic approach to English pluralization, in C

Salzenberg (ed), Proceedings of the Second Annual Perl Conference, San

Jose, CA, USA, 17-20 August, O'Reilly.

Conway, D. M. (1993b) HyperLecture: a self-correlating lecture presentation and

revision system, Proceedings of the 1993 East-West International Conference

on Human-Computer Interaction (EWHCI'93) Moscow, Russia, vol. 1, 11-

24.

Corsini, R. J. (1994) Encyclopedia of Psychology, Wiley.

Dalbey, John & Linn, Marcia C. (1985) The Demands and Requirements of Computer

Programming: A Literature Review. Journal of Educational Computing

Research, Vol 1(3).

Dawkins, Richard (1989) The Selfish Gene. Oxford University Press.

Dijkstra, Edsger W., (1985) Fruits of Misunderstanding. Datamation, February 15.

Dix, A., Finlay, J., Abowd, G., & Beale, R. (1998) Human Computer Interaction.

Prentice Hall.

Dix, T. & Lien, T. (1993) Safe-C for Introductory Undergraduate Programming, in

Proceedings of the 16th Australian Computer Science Conference (ACSC),

1993.

du Boulay, Benedict and Matthew, Ian (1984) Fatal error in pass zero: how not to

confuse novices. Behaviour and Information Technology, 1984, volume 3(2),

pp 109-118.

du Boulay, J. B. H. (1989) Some difficulties of learning to program. In E. Soloway and

J.C. Spohrer, editors, Studying the Novice Programmer, Lawrence Erlbaum

Associates, Hillsdale.

du Boulay, J. B. H. (1979) Logo learning by school teachers. Edinburgh: Doctoral

dissertation, Department of Artificial Intelligence, University of Edinburgh.

DuPuis, C. & Burnett, M. (1997) An Animated Turing Machine Simulator in

Forms/3, Department of Computer Science, Oregon State University,

Technical Report #97-60-08 July.

Dybvig, R. Kent (1987) The SCHEME Programming Language, Prentice Hall, New

Jersey.

Dyck, Jennifer L., and Mayer, Richard E. (1985) BASIC Versus Natural Language: Is

There One Underlying Comprehension Process? In Proceedings of the CHI'85

Conference on Human Factors in Computing Systems, San Francisco, April.

Eisenstadt, Marc and Lewis, Matthew W. (1992) Errors in an Interactive

Programming Environment: Causes and Cures. In Novice Programming

Environments: Explorations in Human-Computer Interaction and Artificial

Intelligence (1992), Marc Eisenstadt, Mark T. Keane, and Tim Rajan, (eds),

Lawrence Erlbaum Associates, Hillsdale USA.

Evans, J. St. B. T., Barston, J. L., and Pollard, P. (1983) On the Conflict Between Logic

and Belief in Syllogistic Reasoning, Memory and Cognition 11, pp295-306.

Feuer, A. & Gehani, N., 1984 : Comparing and Assessing Programming Languages:

Ada, C, and Pascal, Prentice-Hall.

Flavell, J.H. (1979) Metacognition and cognitive monitoring, American Psychologist

34(10), pp. 906-911.

Friendly, Michael (1992) Advanced LOGO : A Language for Learning. Prentice-Hall.

Geitz, R. (1994) Concepts in the classroom, programming in the lab, in Technical

Symposium on Computer Science Education Selected papers of the twenty-

fifth annual SIGCSE symposium Computer science education March 10 -

12, Phoenix, Arizona, USA .

Geurts, L., Meertens, L., and Pemberton, S. (1990) ABC Programmer's Handbook,

Prentice Hall.

Goldberg, A., Robson, D. (1983) "Smalltalk-80: The language and its implementation".

Addison-Wesley.

Green, T. & Blackwell, A. (1998) Cognitive Dimensions of Notations and other

information artefacts. Tutorial presented at HCI'98. Available at

http://www.cl.cam.ac.uk/~afb21/publications/CDTutSep98.pdf

Green, T. R. G. (1989) Cognitive Dimensions of Notations, in People and Computers

V: Proceedings of Human Computer Interaction 1989, (HCI'89), Cambridge

University Press.

Green, T. R. G. (1990) Programming Languages as Information Structures. In

Psychology of Programming, edited by J.-M. Hoc, T. R. G. Green, R.

Samur„ ay, and D. J. Gilmore, Academic Press.

Harbison, S. (1992) Modula 3, Prentice Hall.

hbc (1998) Haskell compiler http://www.cs.chalmers.se/~augustss/hbc/hbc.html.

Hofstadter, D. (1979) Gödel, Escher, Bach: an Eternal Golden Braid, Part II, Chapter

10: "Similar Levels", Basic Books.

Holt, R.C. & Hume, J.N.P. (1984) Introduction to Computer Science using the Turing

Programming Language, Prentice-Hall.

Holt, R.C., Matthews, P.A., Rosselet, J.A., Cordy,J.R. (1988) The Turing

Programming Language: Design and Definition, Prentice Hall.

Hudak, P. & Fasel, J.H. (1992) A Gentle Introduction to Haskell, SIGPLAN Notices,

27(5), May, ACM.

Iverson, Kenneth E., (1962) A Programming Language, Wiley.

Jeffries, R. Turner, A., Polson, P., & Atwood, M. (1981) The processes involved in

designing software. In J. Anderson (Ed.), Cognitive skills and their

acquisition. Erlbaum, Hillsdale, New Jersey.

Katz, Elizabeth E. & Porter, Hayden S. (1991) HyperTalk as an overture to CS1. In

Proceedings of the twenty-second SIGCSE technical symposium on

Computer Science Education, March, San Antonio, TX USA. Pages 48-54

Kernighan, B. & Ritchie, D. (1988) The C Programming Language, 2nd ed., Prentice-

Hall.

Kessler, Claudius M., and Anderson, John R. (1986) Learning flow of control:

Recursive and iterative procedures. Human-Computer Interaction, 1, 135-166.

Kölling, M. (1999a) The Design of an Object-Oriented Environment and Language for

Teaching, PhD Thesis, Basser Department of Computer Science, University

of Sydney.

Kölling, M. (1999b) Teaching Object Orientation with the Blue Environment.

Journal of Object Oriented Programming, 12(2), May, pp14-23.

Kölling, M. and Rosenberg, J. (1996b) An Object-Oriented Program Development

Environment for the First Programming Course. Proceedings of the 27th

SIGCSE Technical Symposium on Computer Science Education, ACM,

Philadelphia, Pennsylvania, March, pp.83-87.

Kölling, M., & Rosenberg, J. (1996a) Blue - A Language for Teaching Object-Oriented

Programming, Proceedings of the 27th SIGCSE Technical Symposium on

Computer Science Education, ACM, Philadelphia, Pennsylvania, March,

pp.190-194

Kölling, M., Koch, B., & Rosenberg, J. (1995) Requirements for a First Year Object

Oriented Teaching Language, SIGCSE Bulletin, 27(1), Mar, pp 173-177.

Lamport, Leslie (1986) LATEX : a document preparation system. Addison-Wesley,

Reading, Mass., USA.

Landauer, Thomas K. (1995) The trouble with computers : usefulness, usability, and

productivity. MIT Press, Cambridge, Mass., USA.

Language List (2000) The Language List http://cui.unige.ch/langlist

Levy, S. (1995) Computer Language Usage in CS1: Survey Results, SIGCSE Bulletin,

27(3), Sept 1995, pp21-26.

Mayer, Richard E. (1983) Can you repeat that? Qualitative effects of repetition and

advance organizers on learning from science prose. Journal of Educational

Psychology, 75, 40-49.

Mayer, Richard E. (1989) The psychology of how novices learn computer programming.

In E. Soloway and J.C. Spohrer, editors, Studying the Novice Programmer,

Lawrence Erlbaum Associates, Hillsdale.

Mayer, Richard E. (1992) Thinking, Problem Solving, Cognition. Second Edition. W.

H. Freeman and Company, New York.

McIver, L. & Conway, D. (1996) Seven Deadly Sins of Introductory Programming

Language Design, In Proceedings of Software Engineering: Education &

Practice, 1996 (SE:E&P’96), IEEE Computer Society Press.

McIver, L. & Conway, D. M., (1999) GRAIL: A Zero'th programming language, in G

Cummings, T Okamoto and Louis Gomez (eds), Proceedings of the 7th

International Conference on Computers in Education (ICCE'99), Chiba,

Japan, November 1999, IOS Press, Volume 2, pp 43-50.

McIver, L. (2000) The Effect of Programming Language on Error Rates of Novice

Programmers. In Proceedings Twelfth Annual Meeting of the Psychology of

Programming Interest Group, Corigliano Calabro, Italy, April, Edizioni

Memoria.

Meertens, L. (1981) Issues in the Design of a Beginners’ Programming Language,

Algorithmic Languages, de Bakker/van Vliet (eds), IFIP North Holland

Publishing Company, pp167-184

Melissa virus (1999)

http://support.microsoft.com/support/exchange/content/whitepapers/

melissa.doc

Meyer, B. (1992) Eiffel: The Language, Prentice-Hall.

Miller, P., Pane, J., Meter, G. & Vorthman, S. (1994) Evolution of Novice

Programming Environments: The Structure Editors of Carnegie Mellon

University. Interactive learning Environments. 4(2) pp 140-158.

Mody, R.P. (1991) C in Education and Software Engineering, SIGCSE Bulletin, 23(3)

September.

Mulholland, P. & Watt, S.N.K. (1998) Hank: A friendly cognitive modelling language

for psychology students. In Proceedings of the IEEE Symposium on Visual

Languages, VL'98, Nova Scotia, Canada.

Murnane, J. (1993) The Psychology of Computer Languages For Introductory

Programming Courses, New Ideas in Psychology, 11(2), pp 213-228.

Myers, Brad (2000) http://www.cs.cmu.edu/~NatProg/langeval.html

Nielsen, Jakob (1993) Usability Engineering. Academic Press.

Nielsen, Jakob, (1994) Enhancing the explanatory power of usability heuristics. In

Proceedings Human factors in computing systems: celebrating

interdependence (CHI'94), Boston, United States, April 24 - 28, pp 152-258.

Norman, Donald A. (1990) The Design of Everyday Things, Doubleday.

Norman, Donald A. (1992) Turn signals are the facial expressions of automobiles.

Addison Wesley.

Norman, Donald A. (1993) Things that make us smart. Addison Wesley.

Norman, Donald A. (1998) The invisible computer : why good products can fail, the

personal computer is so complex, and information appliances are the solution. MIT

Press, Cambridge, Mass.

Pane, John & Myers, Brad. (2000) The Influence of the Psychology of Programming on

a Language Design: Project Status Report. 12th Annual Workshop of the

Psychology of Programming Interest Group, PPIG 2000, Corigliano

Calabro, Italy. 10-13 Apr. 2000.

Papert, Seymour (1993) Mindstorms: Children, Computers, and Powerful Ideas, 2nd

Ed., BasicBooks, New York.

Pattis, Richard E., Roberts, Jim, & Stehlik, Mark. (1995) Karel the Robot: A Gentle

Introduction to the Art of Programming. 2nd Edition. John Wiley & Sons, Inc.

Pea, R. D. (1986) Language-independent conceptual bugs in novice programming.

Journal of Educational Computing Research, 2(1), 25-36.

Pennington, Nancy (1987) Comprehension Strategies in Programming. In Empirical

Studies of Programmers: Second Workshop, Ablex Publishing Corporation,

New Jersey.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., and Simmons, R. (1989)

Conditions of Learning in Novice Programmers. In E. Soloway and J.C.

Spohrer, editors, Studying the Novice Programmer, Lawrence Erlbaum

Associates, Hillsdale.

Philipchalk, Ronald P & McConnell, James V (eds) (1994) Understanding Human

Behaviour, 8th edition, Harcourt Brace College Publishers, Fort Worth, Texas.

Polson, P. G., & Lewis, C. H. (1990) Theory-based design for easily learned interfaces.

Human–Computer Interaction 5, 2&3 , 191–220.

Putnam, Ralph T., Sleeman, D., Baxter, Juliet A., and Kuspa, Laiani K. (1986) A

Summary of Misconceptions of High School Basic Programmers. In the Journal

of Educational Computing Research, Volume 2(4).

Raggett, Dave (1998) Raggett on HTML 4. Addison-Wesley, Harlow, England.

Reason, James (1990) Human Error. Cambridge University Press, Cambridge.

Reid Report (1999)

http://irenaeus.ccsu.ctstateu.edu/~www/reference/language-lists/lang-

list-20.html

Ritchie, Dennis (1996) The Development of the C Language. In History of

Programming Languages – II, Thomas J. Bergin Jr and Richard G. Gibson Jr

(Eds), ACM Press, New York.

Rumelhart, D. & Norman, D. (1978) Accretion, tuning and restructuring: Three

modes of learning, In. W. Cotton, J.and Klatzky, R. (eds.), "Semantic Factors in

Cognition", Erlbaum.

Schneiderman, Ben (1987) Designing the User Interface: Strategies for Effective

Human-Computer Interaction. Addison-Wesley.

Shafer, Dan, (1991) The complete book of Hypertalk 2. Addison-Wesley.

Sime, M. E., Green, T.R.G., & Guest, D.J. (1973) Psychological Evaluation of Two

Conditional Constructions Used in Computer Languages. International Journal

of Man-Machine Studies, 5, pp 105-113.

Soloway, Elliot, Bonar, Jeffrey & Ehrlich, Kate (1989) Cognitive Strategies and

Looping Constructs: An Empirical Study. In E. Soloway and J.C. Spohrer,

editors, Studying the Novice Programmer, Lawrence Erlbaum Associates,

Hillsdale.

Spohrer, James C., and Soloway, Elliot. (1989) Novice Mistakes: Are the Folk

Wisdoms Correct? In E. Soloway and J.C. Spohrer, editors, Studying the

Novice Programmer, Lawrence Erlbaum Associates, Hillsdale.

Spohrer, James C., Soloway, Elliot, and Pope, Edgar (1985) Where The Bugs Are. In

Proceedings of the CHI'85 Conference on Human Factors in Computing

Systems, San Francisco, April.

Springer, G. & Friedman, D.P. (1989) Scheme and the Art of Programming, The

Massachusetts Institute of Technology.

Stroustrup, B. (1991) The C++ Programming Language, 2nd edition, Addison Wesley.

Stroustrup, B. (1994) The Design and Evolution of C++, Addison-Wesley.

Thorburn, W. M. (1915) "Occam's razor," Mind, 24, pp. 287-288.

Thorndike, E. (1932) The Fundamentals of Learning, New York: Teachers College

Press.

Turner, D.A. (1985) Miranda: A non-strict functional language with polymorphic types,

in J.-P. Jouannaud (ed.) Functional Programming Languages and Computer

Architecture, Lecture Notes in Computer Science 201, Springer Verlag.

US Department of Defence, (1981) The Programming Language Ada Reference

Manual, Lecture Notes in Computer Science, Volume 106, Springer-Verlag.

Van Someren, Maarten W. (1990) What's Wrong? Understanding beginners'

problems with Prolog. in Instructional Science 19, pp 257-282.

Wall, L., Christianson, T., & Schwartz, R.L. (1996) Programming Perl, 2nd Edition,

O'Reilly & Associates.

Wiedenbeck, S. (1985) Novice/expert differences in programming skills. International

Journal of Man-Machine Studies, 23, 383-390.

Wilensky, R. (1984) LISPcraft, Norton.

Wirth, N. & Jensen, K. (1975) Pascal User Manual and Report, Springer-Verlag.

Wirth, Niklaus (1988) Programming in Modula-2, 4th edition, Springer Verlag.

Appendix A - GRAIL Grammar

program: typeDecl(s)opt

function(s)opt

program ID

decl(s)

 stmnt(s)

 end program

function(s)opt

stmnt: variable ←←←← expr

 | ifStmnt

 | loopStmnt

 | IOStmnt

 | functionCall

decl:

ifStmnt: if expr then

stmnt(s)

elseIfStmntopt

elseStmntopt

end if

elseIfStmnt: else if expr then

stmnt(s)

elseStmnt: otherwise

stmnt(s)

loopStmnt: loop

stmnt(s) opt

if (expr) then

exit loop

end if

stmnt(s) opt

 end loop

orExp: andExp | orExp or logExp

andExp: notExp | andExp and logExp

notExp: logExp | not logExp

logExp: (orExp) | boolean | boolExp | eqExp

boolExp: gtExp1 | ltExp1 | boolean | (boolExp)

eqExp: expr = expr | expr ≠ expr | boolExp = boolExp |
boolExp ≠ boolExp

gtExp1: gtExp1 > expr | gtExp1 ≥ expr | gtExp

gtExp: expr > expr | expr ≥ expr

ltExp1: ltExp1 < expr | ltExp1 ≤ expr | ltExp

ltExp: expr < expr | expr ≤ expr

expr: expr + term | expr — term | term

term: term ÷÷÷÷ factor | term ×××× factor | factor

factor: value

 | (expr)

 | - expr

 | + expr

 | functionCall

simpleVal: NUM

| TEXT

| BOOLEAN

value : simpleVal

| variable

variable : ID

| variable s ID

| variable ID

| variable [value]

valueList : value

| value , valueList

simpleDecl: item ID is type_name simpleValopt

decl : simpleDecl

| constant ID is simpleVal

typeDecl: type ID is type_name

| type ID has

fieldDecl(s)

end type

fieldDecl : field ID is type_name

type_name : number

| text

| boolean

| ID

| array of NUM type_name

| array of NUM × NUM type_name

IOStmnt : write valueList

| read valueList

functionCall : ID (valueopt (,valueopt))

function: function ID (paramsopt)

decl(s)

stmnt(s)

end function

| function ID (paramsopt) returns type_name

decl(s)

stmnt(s)

return value

end function

new function syntax:

params: simpleDecl (, paramsopt)

function ID (paramsopt) returns type_name

decl(s)

stmnt(s)

end function returning value

Appendix B

Jump Start Programme Notes (GRAIL)

Algorithms
An algorithm is a description of how to complete a task - for example, a recipe,
instructions for using a video recorder, or directions on how to reach your house.
Algorithms do not have to be written in a programming language. When
planning a program, a good approach is to write a description in English of what
needs to be done, and then translate that into a programming language.
Algorithms need to be very clear and orderly. They are often written in point
form, eg, an algorithm for getting to Monash from Huntingdale Station might be:
1. Go to the Monash bus stop.
2. wait for the Monash bus.
3. when the bus arrives, get on it.
4. Get off the bus at the Monash bus loop.

Input/Output (I/O)
Input and Output are the ways computers communicate with users. Input is
usually something the user types in (ie from the keyboard) and output is
something the computer writes on the screen. There are other types of I/O (eg.
input using the mouse, output to a printer etc).

The GRAIL I/O commands are “read” and “write”. “read” reads from the
keyboard, and “write” writes to the screen.
eg

read name
write name

Items
Items (also called “variables”) can be thought of as places to store things. If you
need to remember someone’s name, a simple way is to write it down until you
need it. Items in GRAIL can be of different types, for example you would store
someone’s ID number in a “number” item, and you would store their name in a
“text” item. GRAIL needs to know in advance what sort of items you plan to use,
so each item needs to be “declared” like this:

item name is text
item id is number

To put a value in an item, you use an “assignment” statement (so called because
you are “assigning” a value to an item) like this:

name ←←←← “Linda McIver”
id ←←←← 12345678

Selection
Most algorithms will require you to make choices at some point - eg “if the bus is
a Monash bus, get on it, otherwise wait for the next one.” In programming terms,
this is referred to as “selection”, because you are asking the computer to make a
selection between two or more possible actions.
In GRAIL, this is done with an “if” statement, like this:

if id >= 20000000 then
write “That’s not a valid ID number.”
id ←←←← backup

else
write “The ID in question is “,id

end if

Iteration
Iteration involves doing things repeatedly. For example, you might want to read
in a list of numbers. If you work your way through the list, reading in each
number progressively, that is known as iterating through the list.
In GRAIL, iteration is generally done with a loop, like this:

loop
write “Please enter a positive number”
read n
if (n<0) then

exit loop
end if
sum ←←←← sum + n

end loop

Structures/Records
Structures allow you to keep different items together - for example, you might
want to keep a list of student names and id numbers together, or CD titles, artists
and lengths etc. In GRAIL, you can declare an “aggregate type” to hold whatever
items you wish to keep together, like this:

type student has
field name is text
field id is number

end student

type cd has
field title is text
field artist is text
field length is number

end type

You can then declare an item of that type, like this:

item myStudent is student

and access the separate parts of that type like this:

myStudent’s name ←←←← “Linda”

myStudent’s id ←←←← 12345678

write “Name: “,myStudent’s name, “ID: “,myStudent’s id

Arrays
Arrays allow you to store lots of items of the same type, for example a list of
names, or a list of numbers, or even a list of structures. To access a specific
element of an array, you use an “index”. Array indices start at 1, and go to the
size of the array, like this:

item numList is array of 5 number

numList[1] ←←←← 4
numList[2] ←←←← 56

item class is array of 10 student

class[1]’s name ←←←← “Fred Nerk”
class[1]’s id ←←←← 23456789

Of course, it gets rather clumsy accessing each element separately like this, so it
makes sense to combine loops and arrays, like this:

item index is number

index ←←←← 1
loop

if (index>10) then
exit loop

end if
write “Please enter the next name.”
read class[index]’s name
write “Please enter this student’s id.”
read class[index]’s id
index ←←←←index+1

end loop

Functions/Procedures
For large programs, it can be helpful to break a problem down into smaller
chunks. These chunks are often called “functions” or “procedures”. A function
usually performs a small, well-defined task, such as finding the square root of a
number, or printing out a list of names. Functions often have values given to
them, upon which they operate - for example, if you wanted to find the square of
4, you would “pass” the value 4 to the function “square”, like this:
result ←←←← square(4)
In this case, the function also returns a value, which we have placed into “result”.
Functions may return values of any type (including structures and arrays), but
they do not always return anything.
A function may be defined in GRAIL like this:

function square (item n is number) returns number
return n××××n

end function

or

function printList (item names is array of text)
item i is number

i ←←←←1

loop
if (i>10) then

exit loop
end if
write “name “,i,” is “, names[i]
i ←←←←i+1

end loop

end function

Appendix C

Jump Start Programme - Notes (LOGO)

Algorithms
An algorithm is a description of how to complete a task - for example, a recipe,
instructions for using a video recorder, or directions on how to reach your house.
Algorithms do not have to be written in a programming language. When
planning a program, a good approach is to write a description in English of what
needs to be done, and then translate that into a programming language.
Algorithms need to be very clear and orderly. They are often written in point
form, eg, an algorithm for getting to Monash from Huntingdale Station might be:
1. Go to the Monash bus stop.
2. wait for the Monash bus.
3. when the bus arrives, get on it.
4. Get off the bus at the Monash bus loop.

Input/Output (I/O)
Input and Output are the ways computers communicate with users. Input is
usually something the user types in (ie from the keyboard) and output is
something the computer writes on the screen. There are other types of I/O (eg.
input using the mouse, output to a printer etc).

The LOGO I/O commands are “print” (abbreviated to “pr”) for printing to the
screen, and “readword” for reading from the keyboard.
eg

print [hello]
make “mynum readword

Items
Items (also called “variables”) can be thought of as places to store things. If you
need to remember someone’s name, a simple way is to write it down until you
need it. In LOGO, to put a value in an item, you use an “assignment” statement
(so called because you are “assigning” a value to an item) like this:

make “name [Linda McIver]
make “id 12345678

The first statement gives name the value “Linda McIver” (a string of text). The
second gives id the value 12345678 (a number).

Selection
Most algorithms will require you to make choices at some point - eg “if the bus is
a Monash bus, get on it, otherwise wait for the next one.” In programming terms,
this is referred to as “selection”, because you are asking the computer to make a
selection between two or more possible actions.
In LOGO, this is done with an “if” statement, like this:

if :id > 20000000 [
(print [That’s not a valid ID number.])
make “id 0

]

The “if” statement only allows you to execute an action if the condition is true. If
you’d also like to do something when the condition is false, you need an “ifelse”
statement, like this:

ifelse :id > 20000000 [
(print [That’s not a valid ID number.])
make “id 0

][
(print [The ID in question is] :id)

]

Iteration
Iteration involves doing things repeatedly. For example, you might want to draw
a square. If you execute one command, or group of commands, multiple times,
that is known as iteration.
In LOGO, iteration is generally done with a “repeat” statement, like this:

repeat 4 [fd 30 rt 90]

Arrays
Arrays allow you to store lots of items of the same type, for example a list of
names, or a list of numbers, or even a list of structures. To declare an array in
LOGO, you’d use a statement like this:

make “mylist array 10

where mylist is the name of the variable, and 10 is the size, or length, of the array.

 To access a specific element of an array, you use an “index”. Array indices start at
1, and go to the size of the array, like this:

print (item 1 :mylist)

and to set the value of an element of an array, you use “setitem”, like this:
setitem 1 :mylist [12345]
setitem 2 :mylist [6]

We can also use structures called lists to combine related items, like this:

make “newlist (list [fred] [1234])

(setitem 1 :mylist (list [fred] [1234]))
(setitem 2 :mylist (list [ralph] [1235]))

Using this technique we can keep things like names and id numbers together.

Of course, it gets rather clumsy accessing each element separately like this, so it
makes sense to combine loops and arrays, like this:

make "mylist array 10

make "index 1

repeat 4 [
print [Please enter the number]
make "num readword
print [Please enter a name]
make "name readword
(setitem :index :mylist (list :name :num))
make "index :index+1

]

And then we can print out the resulting array like this:

make "index 1
repeat 4 [

(print [item] :index [is] (item :index :mylist))
make "index :index+1

]

Functions/Procedures
For large programs, it can be helpful to break a problem down into smaller
chunks. These chunks are often called “functions” or “procedures”. A function
usually performs a small, well-defined task, such as finding the square root of a
number, or printing out a list of names. Functions often have values given to
them, upon which they operate - for example, if you wanted to find the square of
4, you would “pass” the value 4 to the function “square”, like this:
make “result square 4
In this case, the function also returns a value, which we have placed into “result”.
Functions may return values of any type (including structures and arrays), but
they do not always return anything.
A function may be defined in LOGO like this:

to square :num
output :num * :num

end

or

to draw.squares :side
repeat 4 [

repeat 4 [fd :side rt 90]
pu lt 45 fd :side pd

]
end

	Title Page
	Abstract
	Table of Contents
	Introduction
	User interfaces and usability
	The programming language as interface
	The trouble with learning to program
	Usability of programming languages
	A theory of bad pedagogical programming language design
	A theory of good pedagogical programming language design
	Case study: Applying the design process: GRAIL
	Testing and evalution
	Conclusions and further work
	Bibliography
	Appendix A - GRAIL Grammar
	Appendix B - Jump Start Notes (GRAIL)
	Appendix C - Jump Start Notes (LOGO)

